Spontaneous activity in denervated mouse diaphragm muscle. 1976

J W Smith, and S Thesleff

Intracellular electrodes were used to study the discrete depolarizations which trigger fibrillation potentials in chronically denervated mouse diaphragm muscles. Provided that the muscles were perfused on both sides spontaneous activity was maintained in vitro. 2. Discrete spontaneous depolarizations, present only in the centre of the muscle, were recorded from the third day of denervation reaching a maximum in prevalence 9-12 days after sectioning the nerve. These potentials had random occurrence and nearly constant amplitude and frequency within a fibre, dependence of amplitude and frequency on membrane potential, and low temperature dependence. 3. The spontaneous activity was enhanced and could be initiated in previously quiescent fibres by lowering the external Ca concentration. The activity was reduced by increasing external Ca and was abolished at 15mM-[Ca] 0. Tetrodotoxin (10-(7)M) blocked spontaneous activity. 4. The spontaneous activity was enhanced by the catecholamines isoprenaline and adrenaline (0.5-10 mug/ml.). This effect of isoprenaline was accompanied by an increase in the rate of rise and the amount of overshoot of the action potential. 5. Ouabain (10-(6)-10-(4)M) of K+-free solutions reversibly blocked spontaneous activity. Ouabain (10-(4)M) reduced the rate of rise and the amount of overshoot of the action potential. 6. Detubulation of muscle fibres with glycerol of the presence of hypertonic solutions abolished spontaneous activity which could not be restarted by reducing Ca or by the addition of isoprenaline. 7. The results support the suggestion that the spontaneous discrete depolarizations which give rise to fibrillation potentials in denervated muscle result from regenerative sodium conductance increases within the transverse tubular system of the muscle fibres. Catecholamines and ouabain could affect this activity either directly, through an action on membrane excitability, or indirectly via the Na+-K+ pump.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009121 Muscle Denervation The resection or removal of the innervation of a muscle or muscle tissue. Denervation, Muscle,Denervations, Muscle,Muscle Denervations
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003964 Diaphragm The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION. Respiratory Diaphragm,Diaphragm, Respiratory,Diaphragms,Diaphragms, Respiratory,Respiratory Diaphragms
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

J W Smith, and S Thesleff
November 1956, Science (New York, N.Y.),
J W Smith, and S Thesleff
January 1964, Nature,
J W Smith, and S Thesleff
May 1974, The Journal of physiology,
J W Smith, and S Thesleff
January 1955, Giornale di psichiatria e di neuropatologia,
J W Smith, and S Thesleff
April 1982, Journal of neurology, neurosurgery, and psychiatry,
J W Smith, and S Thesleff
September 1968, Biochimica et biophysica acta,
J W Smith, and S Thesleff
September 1985, Archives internationales de physiologie et de biochimie,
J W Smith, and S Thesleff
April 1975, Proceedings of the National Academy of Sciences of the United States of America,
J W Smith, and S Thesleff
January 1982, Muscle & nerve,
Copied contents to your clipboard!