Membrane properties underlying spontaneous activity of denervated muscle fibres. 1974

D Purves, and B Sakmann

We have examined the events underlying the initiation of spontaneous action potentials (fibrillation) in fibres of previously denervated rat diaphragm maintained in organ culture for up to 10 days.1. Based on discharge pattern, two classes of spontaneously active fibres were found: rhythmically discharging fibres, and fibres in which action potentials occur at irregular intervals.2. Sites of action potentials initiation were located by exploration along the fibre length with two independent extracellular recording electrodes. The majority of sites of origin in both regular and irregular fibres were at the former end-plate zone; however, there was no region along the length that could not, at least in some fibres, be a site of origin.3. Intracellular recording at or near sites of origin of action potential discharge showed two types of initiating events. Irregularly discharging fibres were brought to threshold by discrete depolarizations of up to 15 mV in amplitude, while regularly occurring action potentials were associated with oscillations of the membrane potential.4. Discrete depolarizations (called fibrillatory origin potentials or f.o.p.s) at sites of origin in irregularly discharging fibres have the following properties: (a) random occurrence and nearly constant amplitude outside a refractory period during which both amplitude and probability of a second f.o.p. are reduced; (b) associated inward current flow which is localized to about 100 mum or less along the fibre length, and (c) dependence of amplitude and frequency on membrane potential.5. Oscillation of membrane potential found at sites of origin of action potential discharge in regular fibres also occurred locally along the fibre length and was sensitive to changes in membrane potential.6. Both f.o.p.s and oscillations of membrane potential were reversibly abolished by low Na(+)-Ringer fluid or tetrodotoxin.7. Neither type of initiating event was appreciably affected by concentrations of D-tubocurarine which blocked extrajunctional sensitivity to acetylcholine.8. We conclude that spontaneous action potentials under these conditions arise from a localized Na(+)-conductance change in the membrane of the active fibre; this conductance change is distinct from the increased Na(+)-conductance which follows the interaction of acetylcholine with its receptor. Spontaneous activity in single, denervated muscle fibres is cyclical and self-inhibiting (Purves & Sakmann, 1974); thus the Na(+)-conductance change underlying the initiation of spontaneous action potentials is affected by muscle fibre activity.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009121 Muscle Denervation The resection or removal of the innervation of a muscle or muscle tissue. Denervation, Muscle,Denervations, Muscle,Muscle Denervations
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D003964 Diaphragm The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION. Respiratory Diaphragm,Diaphragm, Respiratory,Diaphragms,Diaphragms, Respiratory,Respiratory Diaphragms
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

D Purves, and B Sakmann
January 1964, Nature,
D Purves, and B Sakmann
November 1956, Science (New York, N.Y.),
D Purves, and B Sakmann
May 1976, The Journal of physiology,
D Purves, and B Sakmann
July 1969, Nature,
D Purves, and B Sakmann
January 1955, Giornale di psichiatria e di neuropatologia,
D Purves, and B Sakmann
April 1980, The Journal of physiology,
D Purves, and B Sakmann
March 1960, The Journal of physiology,
Copied contents to your clipboard!