Effect of x irradiation on spermatogonia at the fish, Oryzias latipes. 1976

Y Hyodo-Taguchi, and N Egami

UI MeSH Term Description Entries
D008297 Male Males
D008940 Mitotic Index An expression of the number of mitoses found in a stated number of cells. Index, Mitotic,Indices, Mitotic,Mitotic Indices
D011830 Radiation Effects The effects of ionizing and nonionizing radiation upon living organisms, organs and tissues, and their constituents, and upon physiologic processes. It includes the effect of irradiation on food, drugs, and chemicals. Effects, Radiation,Effect, Radiation,Radiation Effect
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013093 Spermatogonia Euploid male germ cells of an early stage of SPERMATOGENESIS, derived from prespermatogonia. With the onset of puberty, spermatogonia at the basement membrane of the seminiferous tubule proliferate by mitotic then meiotic divisions and give rise to the haploid SPERMATOCYTES. Spermatophores,Spermatogonias,Spermatophore
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms
D013737 Testis The male gonad containing two functional parts: the SEMINIFEROUS TUBULES for the production and transport of male germ cells (SPERMATOGENESIS) and the interstitial compartment containing LEYDIG CELLS that produce ANDROGENS. Testicles,Testes,Testicle

Related Publications

Y Hyodo-Taguchi, and N Egami
August 1973, Experimental gerontology,
Y Hyodo-Taguchi, and N Egami
January 1988, The Journal of experimental zoology,
Y Hyodo-Taguchi, and N Egami
January 1986, Developmental and comparative immunology,
Y Hyodo-Taguchi, and N Egami
January 1969, International journal of radiation biology and related studies in physics, chemistry, and medicine,
Y Hyodo-Taguchi, and N Egami
June 1955, Endocrinologia japonica,
Y Hyodo-Taguchi, and N Egami
September 1969, Transplantation,
Y Hyodo-Taguchi, and N Egami
February 1983, Mutation research,
Y Hyodo-Taguchi, and N Egami
October 1985, International journal of radiation biology and related studies in physics, chemistry, and medicine,
Copied contents to your clipboard!