[Ca2+]i-reducing action of cAMP in rat pancreatic beta-cells: involvement of thapsigargin-sensitive stores. 1998

K Yaekura, and T Yada
Department of Physiology, Kagoshima University School of Medicine, Japan.

In the present study, we examined the ability of adenosine 3',5'-cyclic monophosphate (cAMP) to reduce elevated levels of cytosolic Ca2+ concentration ([Ca2+]i) in pancreatic beta-cells. [Ca2+]i and reduced pyridine nucleotide, NAD(P)H, were measured in rat single beta-cells by fura 2 and autofluorescence microfluorometry. Sustained [Ca2+]i elevation, induced by high KCl (25 mM) at a basal glucose concentration (2.8 mM), was substantially reduced by cAMP-increasing agents, dibutyryl cAMP (DBcAMP, 5 mM), an adenylyl cyclase activator forskolin (10 microM), and an incretin glucagon-like peptide-1-(7-36) amide (10(-9) M), as well as by glucose (16.7 mM). The [Ca2+]i-reducing effects of cAMP were greater at elevated glucose (8.3-16.7 mM) than a basal glucose (2.8 mM). An inhibitor of protein kinase A (PKA), H-89, counteracted [Ca2+]i-reducing effects of cAMP but not those of glucose. Okadaic acid, a phosphatase inhibitor, at 10-100 nM also reduced sustained [Ca2+]i elevation in a concentration-dependent manner. Glucose, but not DBcAMP, increased NAD(P)H in beta-cells. [Ca2+]i-reducing effects of cAMP were inhibited by 0.3 microM thapsigargin, an inhibitor of the endoplasmic reticulum (ER) Ca2+ pump. In contrast, [Ca2+]i-reducing effects of cAMP were not altered by ryanodine, an ER Ca(2+)-release inhibitor, Na(+)-free conditions, or diazoxide, an ATP-sensitive K+ channel opener. In conclusion, the cAMP-PKA pathway reduces [Ca2+]i elevation by sequestering Ca2+ in thapsigargin-sensitive stores. This process does not involve, but is potentiated by, activation of beta-cell metabolism. Together with the known [Ca2+]i-increasing action of cAMP, our results reveal dual regulation of beta-cell [Ca2+]i by the cAMP-signaling pathway and by a physiological incretin.

UI MeSH Term Description Entries
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D011498 Protein Precursors Precursors, Protein
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy

Related Publications

K Yaekura, and T Yada
August 1999, Journal of neurochemistry,
K Yaekura, and T Yada
January 2014, Ukrainian biochemical journal,
K Yaekura, and T Yada
September 2005, American journal of physiology. Endocrinology and metabolism,
Copied contents to your clipboard!