Beta-hairpins in proteins revisited: lessons for de novo design. 1997

K Gunasekaran, and C Ramakrishnan, and P Balaram
Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.

Beta-Hairpins with short connecting loops (1-5 residues) have been identified from a data set of 250 non-homologous, high resolution (< or =2.0 A) protein crystal structures. The conformational preferences of the loop segments have been analyzed with the specific aim of identifying frequently occurring motifs. Type I' and II' beta-turns were found to have a high propensity for occurrence in two residue loops. For three and four residue loops, the major conformational motif in the linking segments is alphaR-alphaR-alphaL (type I beta-turn followed by a residue in a left-handed helical conformation) and alphaR-alphaR-alphaR-alphaL (a pi-turn motif), respectively. The present larger data set confirms the high occurrences of these motifs which have been identified in earlier analyses. In addition to type I' and type II' beta-turns, several examples of type I beta-turn nucleated two residue loop hairpins, in spite of having an opposing sense of twist to that of type I' beta-turn, have also been observed. Examination of these frequently occurring motifs (flanked by extended conformation [beta]) in the data set reveals that the motifs beta-alphaR-alphaR-alphaL-beta and beta-type I'-beta have equal propensity and type II' indeed having highest propensity to nucleate beta-hairpins. The larger number of examples in this study allows the estimation of the specific amino acid preferences for loop positions in two, three and four residue loops. Small polar residues Asn, Asp, Ser, Thr, Gly and Pro in general have a high propensity for the loop positions but they reveal specific positional preferences in these frequently occurring motifs. There are no strong compositional preferences in the strand segments. Amino acid pair correlations across strands also do not show any significant pattern, with the exception of Cys-Cys pairs. Several Cys-Cys pairs have been identified at the non-hydrogen bonded positions of beta-hairpins; as many as six are disulfide bonded pairs. An examination of longer loop length hairpins reveals that the distortions of hairpins nucleated by tight turns (two residues) are much less frequently observed. The results presented in this study provide inputs for the de novo design of consensus loop segments in synthetic hairpins.

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer
D013499 Surface Properties Characteristics or attributes of the outer boundaries of objects, including molecules. Properties, Surface,Property, Surface,Surface Property
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein

Related Publications

K Gunasekaran, and C Ramakrishnan, and P Balaram
September 1999, The journal of peptide research : official journal of the American Peptide Society,
K Gunasekaran, and C Ramakrishnan, and P Balaram
September 1994, Proceedings of the National Academy of Sciences of the United States of America,
K Gunasekaran, and C Ramakrishnan, and P Balaram
March 2023, Proceedings of the National Academy of Sciences of the United States of America,
K Gunasekaran, and C Ramakrishnan, and P Balaram
August 2004, Proceedings of the National Academy of Sciences of the United States of America,
K Gunasekaran, and C Ramakrishnan, and P Balaram
January 2017, Molecular informatics,
K Gunasekaran, and C Ramakrishnan, and P Balaram
June 2007, Growth factors (Chur, Switzerland),
K Gunasekaran, and C Ramakrishnan, and P Balaram
December 1994, Nature structural biology,
K Gunasekaran, and C Ramakrishnan, and P Balaram
January 2017, Methods in enzymology,
K Gunasekaran, and C Ramakrishnan, and P Balaram
May 2023, Trends in biotechnology,
K Gunasekaran, and C Ramakrishnan, and P Balaram
October 2022, Proteins,
Copied contents to your clipboard!