Analysis of vitamin D-dependent calcium-binding protein messenger ribonucleic acid expression in mice lacking the vitamin D receptor. 1998

Y C Li, and A E Pirro, and M B Demay
Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.

To investigate the roles of the receptor-dependent actions of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] in the regulation of vitamin D-dependent calcium-binding proteins (calbindin-D), the messenger RNA (mRNA) levels of calbindin-D9k and -28k were examined in vitamin D receptor (VDR)-ablated mice and control littermates. In VDR-ablated mice, calbindin-D9k mRNA was dramatically reduced in the intestine, kidneys, lungs, and brain; however, calbindin-D28k mRNA was only moderately decreased in the kidney. After 1,25-(OH)2D3 injection, calbindin-D9k mRNA levels and renal and alveolar calbindin-D28k mRNA levels were induced in control animals, but not in the homozygous mice. When the mice were fed a diet high in lactose, calcium, and phosphorus, intestinal calbindin-D9k mRNA levels in the homozygous mice were restored to those in their control littermates. However, this diet failed to normalize extraintestinal calbindin mRNA levels. These findings demonstrate that the receptor-dependent actions of 1,25-(OH)2D3 regulate calbindin-D9k gene expression and that tissue-specific factors modulate the effects of 1,25-(OH)2D3 on calbindin-D28k gene expression. These data also demonstrate that in the absence of a functional VDR, a high local concentration of calcium, phosphorus, and/or lactose in the intestinal lumen can normalize intestinal calbindin-D9k mRNA levels.

UI MeSH Term Description Entries
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002136 Calcium, Dietary Calcium compounds in DIETARY SUPPLEMENTS or in food that supply the body with calcium. Dietary Calcium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018167 Receptors, Calcitriol Proteins, usually found in the cytoplasm, that specifically bind calcitriol, migrate to the nucleus, and regulate transcription of specific segments of DNA with the participation of D receptor interacting proteins (called DRIP). Vitamin D is converted in the liver and kidney to calcitriol and ultimately acts through these receptors. Calcitriol Receptors,Cholecalciferol Receptors,Receptors, Vitamin D,Vitamin D 3 Receptors,Vitamin D Receptors,1,25-Dihydroxycholecalciferol Receptor,1,25-Dihydroxycholecalciferol Receptors,1,25-Dihydroxyvitamin D 3 Receptor,1,25-Dihydroxyvitamin D3 Receptor,1,25-Dihydroxyvitamin D3 Receptors,Calcitriol Receptor,Receptors, 1,25-Dihydroxyvitamin D 3,Receptors, Cholecalciferol,Receptors, Vitamin D 3,Receptors, Vitamin D3,Vitamin D 3 Receptor,Vitamin D Receptor,Vitamin D3 Receptor,Vitamin D3 Receptors,1,25 Dihydroxycholecalciferol Receptor,1,25 Dihydroxycholecalciferol Receptors,1,25 Dihydroxyvitamin D 3 Receptor,1,25 Dihydroxyvitamin D3 Receptor,1,25 Dihydroxyvitamin D3 Receptors,D Receptor, Vitamin,D Receptors, Vitamin,D3 Receptor, 1,25-Dihydroxyvitamin,D3 Receptor, Vitamin,D3 Receptors, 1,25-Dihydroxyvitamin,D3 Receptors, Vitamin,Receptor, 1,25-Dihydroxycholecalciferol,Receptor, 1,25-Dihydroxyvitamin D3,Receptor, Calcitriol,Receptor, Vitamin D,Receptor, Vitamin D3,Receptors, 1,25-Dihydroxycholecalciferol,Receptors, 1,25-Dihydroxyvitamin D3
D018345 Mice, Knockout Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes. Knockout Mice,Mice, Knock-out,Mouse, Knockout,Knock-out Mice,Knockout Mouse,Mice, Knock out
D064026 Calbindins Calcium-binding proteins that are found in DISTAL KIDNEY TUBULES, INTESTINES, BRAIN, and other tissues where they bind, buffer and transport cytoplasmic calcium. Calbindins possess a variable number of EF-HAND MOTIFS which contain calcium-binding sites. Some isoforms are regulated by VITAMIN D. Calbindin
D064030 S100 Calcium Binding Protein G A calbindin protein found in many mammalian tissues, including the UTERUS, PLACENTA, BONE, PITUITARY GLAND, and KIDNEYS. In intestinal ENTEROCYTES it mediates intracellular calcium transport from apical to basolateral membranes via calcium binding at two EF-HAND MOTIFS. Expression is regulated in some tissues by VITAMIN D. Calbindin 3,Calbindin D9K,Calbindin-D9K,Calcium Binding Protein, Vitamin D Dependent,Calcium-Binding Protein, Vitamin D-Dependent,Cholecalcin,IMCal Protein,Intestinal Membrane Calcium-Binding Protein,Vitamin D-Dependent Calcium-Binding Protein,Intestinal Membrane Calcium Binding Protein,Vitamin D Dependent Calcium Binding Protein
D064092 Calbindin 1 A calcium-binding protein that mediates calcium HOMEOSTASIS in KIDNEYS, BRAIN, and other tissues. It is found in well-defined populations of NEURONS and is involved in CALCIUM SIGNALING and NEURONAL PLASTICITY. It is regulated in some tissues by VITAMIN D. Calbindin D(28)K,Calbindin D28K,Calbindin-D28K

Related Publications

Y C Li, and A E Pirro, and M B Demay
June 1969, New York state journal of medicine,
Y C Li, and A E Pirro, and M B Demay
October 1995, The Journal of clinical endocrinology and metabolism,
Y C Li, and A E Pirro, and M B Demay
May 2000, The Journal of clinical endocrinology and metabolism,
Y C Li, and A E Pirro, and M B Demay
January 1974, Vitamins and hormones,
Copied contents to your clipboard!