Integrin beta cytoplasmic domains differentially bind to cytoskeletal proteins. 1998

M Pfaff, and S Liu, and D J Erle, and M H Ginsberg
Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.

Integrin cytoplasmic domains connect these receptors to the cytoskeleton. Furthermore, integrin-cytoskeletal interactions involve ligand binding (occupancy) to the integrin extracellular domain and clustering of the integrin. To construct mimics of the cytoplasmic face of an occupied and clustered integrin, we fused the cytoplasmic domains of integrin beta subunits to an N-terminal sequence containing four heptad repeat sequences. The heptad repeats form coiled coil dimers in which the cytoplasmic domains are parallel dimerized and held in an appropriate vertical stagger. In these mimics we found 1) that both conformation and protein binding properties are altered by insertion of Gly spacers C-terminal to the heptad repeat sequences; 2) that the cytoskeletal proteins talin and filamin are among the polypeptides that bind to the integrin beta1A tail. Filamin, but not talin binding, is enhanced by the insertion of Gly spacers; 3) binding of both cytoskeletal proteins to beta1A is direct and specific, since it occurs with purified talin and filamin and is inhibited in a point mutant (beta1A(Y788A)) or in splice variants (beta1B, beta1C) known to disrupt cytoskeletal associations of beta1 integrins; 4) that the muscle-specific splice variant, beta1D, binds talin more tightly than beta1A and is therefore predicted to form more stable cytoskeletal associations; and 5) that the beta7 cytoplasmic domain binds filamin better than beta1A. The structural specificity of these associations suggests that these mimics offer a useful approach for the analysis of the interactions and structure of the integrin cytoplasmic face.

UI MeSH Term Description Entries
D008840 Microfilament Proteins Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell. Actin Binding Protein,Actin-Binding Protein,Actin-Binding Proteins,Microfilament Protein,Actin Binding Proteins,Binding Protein, Actin,Protein, Actin Binding,Protein, Actin-Binding,Protein, Microfilament,Proteins, Actin-Binding,Proteins, Microfilament
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D003285 Contractile Proteins Proteins which participate in contractile processes. They include MUSCLE PROTEINS as well as those found in other cells and tissues. In the latter, these proteins participate in localized contractile events in the cytoplasm, in motile activity, and in cell aggregation phenomena. Contractile Protein,Protein, Contractile,Proteins, Contractile
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms

Related Publications

M Pfaff, and S Liu, and D J Erle, and M H Ginsberg
September 1995, The Journal of cell biology,
M Pfaff, and S Liu, and D J Erle, and M H Ginsberg
October 1999, FEBS letters,
M Pfaff, and S Liu, and D J Erle, and M H Ginsberg
January 2004, Archivum immunologiae et therapiae experimentalis,
M Pfaff, and S Liu, and D J Erle, and M H Ginsberg
December 2001, Nature cell biology,
M Pfaff, and S Liu, and D J Erle, and M H Ginsberg
August 1998, Frontiers in bioscience : a journal and virtual library,
M Pfaff, and S Liu, and D J Erle, and M H Ginsberg
October 1993, Current opinion in cell biology,
M Pfaff, and S Liu, and D J Erle, and M H Ginsberg
March 2007, FEBS letters,
M Pfaff, and S Liu, and D J Erle, and M H Ginsberg
September 1991, The Journal of cell biology,
M Pfaff, and S Liu, and D J Erle, and M H Ginsberg
October 2002, The Journal of biological chemistry,
M Pfaff, and S Liu, and D J Erle, and M H Ginsberg
February 2000, The Journal of biological chemistry,
Copied contents to your clipboard!