DNA damaging agents improve stable gene transfer efficiency in mammalian cells. 1998

C W Stevens, and G J Cerniglia, and A R Giandomenico, and C J Koch
Department of Radiation Oncology, University of Pennsylvania, Philadelphia 19104, USA. stevens@msmail.xrt.upenn.edu

Gene therapy is an evolving discipline which today relies primarily on viral systems for gene transfer. The primary reason that plasmid vectors have not been widely used for gene therapy trials is their relatively low rate of stable gene transfer. We show here that both ionizing irradiation and hydrogen peroxide can each increase the gene transfer efficiency of plasmids. Hydrogen peroxide improves gene transfer in a linear dose-dependent manner. At equitoxic doses, hydrogen peroxide improves gene transfer by 20-fold over untreated cells and approximately 5 times above that seen for radiation, and this improvement correlates with both the total amount of DNA damage induced and the amount of residual damage after 4 hr of repair. These data suggest that DNA damaging agents may be useful to improve human gene therapy.

UI MeSH Term Description Entries
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

C W Stevens, and G J Cerniglia, and A R Giandomenico, and C J Koch
October 2004, Experimental cell research,
C W Stevens, and G J Cerniglia, and A R Giandomenico, and C J Koch
September 1981, Somatic cell genetics,
C W Stevens, and G J Cerniglia, and A R Giandomenico, and C J Koch
August 2006, FEBS letters,
C W Stevens, and G J Cerniglia, and A R Giandomenico, and C J Koch
February 1983, Biochemical and biophysical research communications,
C W Stevens, and G J Cerniglia, and A R Giandomenico, and C J Koch
March 1985, Somatic cell and molecular genetics,
C W Stevens, and G J Cerniglia, and A R Giandomenico, and C J Koch
December 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
C W Stevens, and G J Cerniglia, and A R Giandomenico, and C J Koch
February 1994, Proceedings of the National Academy of Sciences of the United States of America,
C W Stevens, and G J Cerniglia, and A R Giandomenico, and C J Koch
September 1989, Mutation research,
C W Stevens, and G J Cerniglia, and A R Giandomenico, and C J Koch
January 2004, Methods in molecular biology (Clifton, N.J.),
C W Stevens, and G J Cerniglia, and A R Giandomenico, and C J Koch
April 1991, Current protocols in molecular biology,
Copied contents to your clipboard!