The RNA polymerase II general elongation complex. 1998

A Shilatifard
Saint Louis University School of Medicine, Edward A. Doisy Department of Biochemistry and Molecular Biology, MO 63104, USA.

Eukaryotic messenger RNA (mRNA) synthesis is a complex multi-stage process that requires the concerted action of many cellular factors to generate a mature functional message. This elaborate process by RNA polymerase II (pol II) proceeds via multiple stages-preinitiation, initiation (Figure 1), promoter clearance, elongation (Figure 1) and termination - which have come to be referred to collectively as the transcription cycle. Although the preinitiation and initiation stages of transcription have received the most attention during the past decade, the past few years have been a watershed for biochemical studies of the pol II elongation complex. Recent studies have demonstrated the existence of several families of pol II elongation factors and nuclear proteins that can govern the activity of pol II during mRNA chain elongation. New findings have revealed that the elongation stage of transcription is a critical site for the regulation of gene expression. Evidence obtained to date suggests that eukaryotes regulate elongation by both 'general' and 'activator dependent' mechanisms. These mechanisms necessitate alteration of pol II's catalytic site, modification of chromatin structure, phosphorylation of the pol II carboxyl-terminal domain (CTD) and involvement of other components of the transcription machinery to increase the rate and efficiency of transcription elongation. This minireview is an annotation on the recent progress in studies of the biochemical mechanism and molecular regulation of the elongation stages of eukaryotic mRNA synthesis. The recent developments that have guided our understanding and propelled current research on transcription elongation by mammalian pol II will be described here.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D005057 Eukaryotic Cells Cells of the higher organisms, containing a true nucleus bounded by a nuclear membrane. Cell, Eukaryotic,Cells, Eukaryotic,Eukaryotic Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D012319 RNA Polymerase II A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6. DNA-Dependent RNA Polymerase II,RNA Pol II,RNA Polymerase B,DNA Dependent RNA Polymerase II
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

A Shilatifard
November 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
A Shilatifard
September 1996, Trends in biochemical sciences,
A Shilatifard
April 2006, Biochemical and biophysical research communications,
A Shilatifard
February 2009, Acta crystallographica. Section D, Biological crystallography,
A Shilatifard
April 1984, Nucleic acids research,
A Shilatifard
September 1996, The Journal of biological chemistry,
A Shilatifard
January 2012, Annual review of biochemistry,
A Shilatifard
January 2013, Biochimica et biophysica acta,
Copied contents to your clipboard!