Distribution and properties of kainate receptors distinct in the CA3 region of the hippocampus of the guinea pig. 1998

C Yamamoto, and S Sawada, and T Ohno-Shosaku
Department of Physiology, Faculty of Medicine, Kanazawa University, Kanazawa 920, Japan.

To characterize the nature of kainate (KA) receptors distinct in the CA3 region of the hippocampus, properties of depolarizations induced by pulses of KA or AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate) applied to dendrites of CA3 neurons with micropipettes were studied in thin transverse slices of the guinea pig hippocampus. KA induced depolarizations at negligible latencies only when administered to the most proximal dendritic areas. The depolarization was unaffected by tetrodotoxin or by a decrease in Ca2+ and an increase in Mg2+ concentrations. The declining slope of the KA-induced depolarization was significantly slower than that of the AMPA-induced depolarization. In comparison with the AMPA-induced depolarization, the KA-induced depolarization was much less susceptible to antagonists such as 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) and 1-(4-aminophenyl)-4-methyl-7, 8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI52466). 6, 7,8,9-Tetrahydro-5-nitro-1H-benz[g]indole-2,3-dione-3-oxime (NS-102) and (2S,4R)-4-methylglutamate (SYM 2081) were without effects. The threshold concentration of pressure-ejected KA to induce depolarizations was about 200 nM. Excitatory postsynaptic potentials elicited by mossy fiber stimulation were more potently suppressed by CNQX than by GYKI52466. These results indicate that receptors responsible for the slow KA depolarization in the CA3 region of the hippocampus are not AMPA receptors but KA receptors. They are localized in the most proximal part of the apical dendrite and distinct from those observed in primary cultures of hippocampal neurons.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D011810 Quinoxalines Quinoxaline
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001569 Benzodiazepines A group of two-ring heterocyclic compounds consisting of a benzene ring fused to a diazepine ring. Benzodiazepine,Benzodiazepine Compounds

Related Publications

C Yamamoto, and S Sawada, and T Ohno-Shosaku
January 2010, Journal of molecular neuroscience : MN,
C Yamamoto, and S Sawada, and T Ohno-Shosaku
February 2006, The Journal of physiology,
C Yamamoto, and S Sawada, and T Ohno-Shosaku
February 2023, Neural regeneration research,
C Yamamoto, and S Sawada, and T Ohno-Shosaku
December 1990, The Journal of physiology,
C Yamamoto, and S Sawada, and T Ohno-Shosaku
April 1986, The Journal of physiology,
C Yamamoto, and S Sawada, and T Ohno-Shosaku
June 2014, The European journal of neuroscience,
C Yamamoto, and S Sawada, and T Ohno-Shosaku
March 1990, Canadian journal of physiology and pharmacology,
C Yamamoto, and S Sawada, and T Ohno-Shosaku
January 1972, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
C Yamamoto, and S Sawada, and T Ohno-Shosaku
January 1996, Learning & memory (Cold Spring Harbor, N.Y.),
Copied contents to your clipboard!