The function of sensory nerve fibers in lumbar radiculopathy. Use of quantitative sensory testing in the exploration of different populations of nerve fibers and dermatomes. 1998

O P Nygaard, and S I Mellgren
Department of Neurosurgery, University Hospital of Tromso, Norway.

METHODS The function of sensory nerve fibers in patients with lumbar radiculopathy and in control individuals was evaluated using quantitative sensory testing. OBJECTIVE To investigate the effect of lumbar nerve root compression on different populations of nerve fibers and to explore the function of sensory nerve fibers in neighboring nerve roots not involved in the mechanical compression. BACKGROUND Results from experimental and clinical studies indicate that chronic compression of lumbar nerve roots affects the large myelinated nerve fibers. The majority of nerve fibers involved in the sensation of pain, however, are small afferent nerve fibers. It is therefore of interest to study the effect of compression on large and small sensory afferent channels. Several authors have elucidated the biochemical interaction between disc tissue and nerve roots. Chemical substances in the epidural space can reach the nerve fibers in nerve roots at the same or neighboring lumbar segments. In this way, fibers not involved in the mechanical compression may be affected. METHODS The small nerve fibers were studied using tests for thermal thresholds (thermotest), and the large myelinated fibers were studied by vibrametry. Forty-two patients were investigated in the symptomatic and the asymptomatic leg, and the results were compared with those of 21 healthy individuals. RESULTS The thresholds of cold, warmth, and vibration were significantly increased in the dermatome of the compressed nerve root, indicating that large and small sensory nerve fibers were affected. Further, the thresholds were significantly increased in the neighboring dermatomes in the symptomatic and the asymptomatic leg. CONCLUSIONS Large and small sensory afferent nerve fibers are affected in lumbar radiculopathy. The increase in sensation thresholds in the ipsilateral neighboring dermatome and in the dermatomes in the asymptomatic leg indicates that adjacent nerve roots are involved in the pathophysiology of sciatica in patients with lumbar disc herniation.

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008159 Lumbar Vertebrae VERTEBRAE in the region of the lower BACK below the THORACIC VERTEBRAE and above the SACRAL VERTEBRAE. Vertebrae, Lumbar
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009408 Nerve Compression Syndromes Mechanical compression of nerves or nerve roots from internal or external causes. These may result in a conduction block to nerve impulses (due to MYELIN SHEATH dysfunction) or axonal loss. The nerve and nerve sheath injuries may be caused by ISCHEMIA; INFLAMMATION; or a direct mechanical effect. Entrapment Neuropathies,Nerve Entrapments,External Nerve Compression Syndromes,Internal Nerve Compression Syndromes,Nerve Compression Syndromes, External,Nerve Compression Syndromes, Internal,Compression Syndrome, Nerve,Compression Syndromes, Nerve,Entrapment, Nerve,Entrapments, Nerve,Nerve Compression Syndrome,Nerve Entrapment,Neuropathies, Entrapment,Neuropathy, Entrapment,Syndrome, Nerve Compression,Syndromes, Nerve Compression
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent

Related Publications

O P Nygaard, and S I Mellgren
January 2021, Frontiers in pain research (Lausanne, Switzerland),
O P Nygaard, and S I Mellgren
February 2002, European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society,
O P Nygaard, and S I Mellgren
October 2009, PM & R : the journal of injury, function, and rehabilitation,
O P Nygaard, and S I Mellgren
June 2023, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
O P Nygaard, and S I Mellgren
March 1998, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society,
O P Nygaard, and S I Mellgren
January 2004, Journal of orofacial pain,
Copied contents to your clipboard!