Projections from the superior olive and lateral lemniscus to tonotopic regions of the rat's inferior colliculus. 1998

J B Kelly, and A Liscum, and B van Adel, and M Ito
Laboratory of Sensory Neuroscience, Institute of Neuroscience, Carleton University, Ottawa, Ontario, Canada. jkelly@ccs.carleton.ca

The projections to physiologically defined tonotopic regions of the central nucleus of the inferior colliculus (ICC) from the adult rat's superior olivary complex (SOC) and lateral lemniscus were investigated using retrograde tract tracing methods. Iontophoretic injections of the retrograde tracers, Fluoro-Gold (FG) or horseradish peroxidase (HRP), were made into the ICC through a glass micropipette, which also served as a recording electrode to determine the frequency response at the injection site. Injections were made into frequency-specific regions based on the best responses of neurons to contralaterally presented tones between 2 25 kHz. In the dorsal nucleus of the lateral lemniscus (DNLL) neurons were labeled both ipsilaterally and contralaterally to the injection site with a larger proportion projecting to the contralateral side. The distribution of labeled cells was concentric, with high frequencies represented along the outer margin and low frequencies represented centrally within DNLL. The lateral superior olive (LSO) was labeled bilaterally, with high frequencies represented medially and low frequencies laterally along the nuclear axis. The projection from the medial superior olive (MSO) was ipsilateral, with high frequencies represented ventrally and low frequencies dorsally. The projection from the superior paraolivary nucleus (SPN) was also largely ipsilateral, with high frequencies represented medially and low frequencies laterally. The intermediate and ventral nuclei of the lateral lemniscus (INLL and VNLL) were also labeled ipsilaterally and exhibited a distribution of tracer that depended on the frequency of the injection site: the low frequency projection was banded but the high frequency projection was more evenly distributed.

UI MeSH Term Description Entries
D007245 Inferior Colliculi The posterior pair of the quadrigeminal bodies which contain centers for auditory function. Colliculus, Inferior,Brachial Nucleus of the Inferior Colliculus,Caudal Colliculus,Colliculus Inferior,Inferior Colliculus,Posterior Colliculus,Colliculi, Inferior,Colliculus Inferiors,Colliculus, Caudal,Colliculus, Posterior,Inferior, Colliculus,Inferiors, Colliculus
D008297 Male Males
D009847 Olivary Nucleus A brainstem nuclear complex. in the hindbrain, also referred to as the olivary body. The olivary nuclear complex is a part of the MEDULLA OBLONGATA and the PONTINE TEGMENTUM. It is involved with motor control and is a major source of sensory input to the CEREBELLUM. Basal Nucleus, Olivary,Nucleus Basalis, Olivary,Olivary Body,Olivary Complex,Olivary Nuclei,Complex, Olivary,Nucleus, Olivary,Nucleus, Olivary Basal,Olivary Basal Nucleus,Olivary Bodies
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001306 Auditory Pathways NEURAL PATHWAYS and connections within the CENTRAL NERVOUS SYSTEM, beginning at the hair cells of the ORGAN OF CORTI, continuing along the eighth cranial nerve, and terminating at the AUDITORY CORTEX. Auditory Pathway,Pathway, Auditory,Pathways, Auditory
D001370 Axonal Transport The directed transport of ORGANELLES and molecules along nerve cell AXONS. Transport can be anterograde (from the cell body) or retrograde (toward the cell body). (Alberts et al., Molecular Biology of the Cell, 3d ed, pG3) Axoplasmic Flow,Axoplasmic Transport,Axoplasmic Streaming,Axonal Transports,Axoplasmic Flows,Axoplasmic Transports,Streaming, Axoplasmic,Transport, Axonal,Transport, Axoplasmic,Transports, Axonal,Transports, Axoplasmic
D013266 Stilbamidines STILBENES with AMIDINES attached.
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

J B Kelly, and A Liscum, and B van Adel, and M Ito
March 1998, Hearing research,
J B Kelly, and A Liscum, and B van Adel, and M Ito
June 1995, The Journal of comparative neurology,
J B Kelly, and A Liscum, and B van Adel, and M Ito
April 1994, The Journal of comparative neurology,
J B Kelly, and A Liscum, and B van Adel, and M Ito
October 2023, The Journal of comparative neurology,
J B Kelly, and A Liscum, and B van Adel, and M Ito
May 1993, The Journal of comparative neurology,
J B Kelly, and A Liscum, and B van Adel, and M Ito
September 1995, The Journal of comparative neurology,
J B Kelly, and A Liscum, and B van Adel, and M Ito
September 1990, Neuroscience letters,
J B Kelly, and A Liscum, and B van Adel, and M Ito
January 1995, Journal of neurochemistry,
J B Kelly, and A Liscum, and B van Adel, and M Ito
January 1982, Experimental brain research,
Copied contents to your clipboard!