Altered cholinergic mechanisms and blood pressure regulation in the rostral ventrolateral medulla of DOCA-salt hypertensive rats. 1998

T Kubo, and R Fukumori, and M Kobayashi, and H Yamaguchi
Department of Pharmacology, Showa College of Pharmaceutical Sciences, Machida, Tokyo, Japan.

We examined whether cholinergic transmission in the rostral ventrolateral medulla (RVLM) of deoxycorticosterone acetate-salt hypertensive rats (DHR) is enhanced and the enhancement is involved in the maintenance of hypertension in DHR, and whether cholineacetyltransferase (ChAT) activities and ChAT mRNA expression are enhanced in neurons intrinsic to the RVLM of DHR. Rats were anesthetized, paralyzed, and artificially ventilated. Unilateral microinjection of cholinergic agents into the RVLM produced a pressor response. The pressor response to physostigmine was greater in DHR than in control rats, whereas the response to carbachol was the same in both sets of rats. Bilateral microinjection of scopolamine into the RVLM produced a decrease in blood pressure. The depressor response was greater in DHR than in control rats. The number of ChAT-activity-detected neurons in the RVLM was greater in DHR than in control rats. The number of ChAT mRNA-expressing neurons in the RVLM was also clearly greater in DHR than in control rats. These results demonstrate that cholinergic transmission in the RVLM is enhanced in DHR, and this enhancement may play a role in the maintenance of hypertension in DHR. It is probable that enhanced activity of cholinergic neurons intrinsic to the RVLM is at least in part, responsible for the enhanced cholinergic transmission in the RVLM of DHR.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D010830 Physostigmine A cholinesterase inhibitor that is rapidly absorbed through membranes. It can be applied topically to the conjunctiva. It also can cross the blood-brain barrier and is used when central nervous system effects are desired, as in the treatment of severe anticholinergic toxicity. Eserine
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors
D003900 Desoxycorticosterone A steroid metabolite that is the 11-deoxy derivative of CORTICOSTERONE and the 21-hydroxy derivative of PROGESTERONE 21-Hydroxyprogesterone,Cortexone,Deoxycorticosterone,Desoxycortone,11-Decorticosterone,21-Hydroxy-4-pregnene-3,20-dione,11 Decorticosterone,21 Hydroxy 4 pregnene 3,20 dione,21 Hydroxyprogesterone

Related Publications

T Kubo, and R Fukumori, and M Kobayashi, and H Yamaguchi
November 1991, European journal of pharmacology,
T Kubo, and R Fukumori, and M Kobayashi, and H Yamaguchi
July 2011, American journal of physiology. Heart and circulatory physiology,
T Kubo, and R Fukumori, and M Kobayashi, and H Yamaguchi
May 2009, Clinical and experimental hypertension (New York, N.Y. : 1993),
T Kubo, and R Fukumori, and M Kobayashi, and H Yamaguchi
January 2000, Hypertension (Dallas, Tex. : 1979),
T Kubo, and R Fukumori, and M Kobayashi, and H Yamaguchi
November 1984, The Journal of pharmacology and experimental therapeutics,
T Kubo, and R Fukumori, and M Kobayashi, and H Yamaguchi
May 1991, Japanese circulation journal,
T Kubo, and R Fukumori, and M Kobayashi, and H Yamaguchi
March 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T Kubo, and R Fukumori, and M Kobayashi, and H Yamaguchi
January 1990, Brain research,
T Kubo, and R Fukumori, and M Kobayashi, and H Yamaguchi
February 1992, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!