Selectivity of hemicholinium mustard, an affinity ligand, for the high-affinity choline transport system. 1997

K H Gylys, and I Abdalah, and D J Jenden
Department of Pharmacology and Brain Research Institute, UCLA School of Medicine, Los Angeles, CA 90024, USA.

The selectivity of the irreversible inhibition of high-affinity choline uptake (HACU) by hemicholinium mustard (HCM; 2,2'-(4,4'-biphenylene)bis[2-hydroxy-4-(2-bromoethyl)-morpholine] hydrochloride) with respect to other cholinergic proteins and other sodium-dependent transport systems was examined. Preincubation of rat forebrain membranes with HCM, followed by washing and measurement of [3H]-hemicholinium-3 binding to the high-affinity choline transporter, was shown to decrease binding capacity (Bmax) by 70% without affecting the apparent affinity of the ligand. However, a similar preincubation, wash and binding experiment using [3H]-NMS as a ligand for muscarinic receptors showed no HCM effect on binding parameters. To measure the effects of HCM on choline acetyltransferase (ChAT), synaptosomes were incubated in HCM, then washed. The synaptosomes were lysed and ChAT activity was measured. Treatment with 50 microM HCM, a concentration that inhibits 100% of synaptosomal HACU, results in a 24% decrease in ChAT activity. HCM demonstrates little residual inhibition of other sodium-dependent neurotransmitter transporter transporters: preincubation with 50 microM HCM results in a decrease of 12% in transport of [3H]-dopamine and a decrease of 6% in the transport of [3H]-GABA. The binding of HCM, like that of hemicholinium-3 is sodium-dependent. HCM preincubation in the presence of sodium results in inhibition of HACU to 32% of control; in the absence of sodium HACU is 65% of control. This represents a loss of 51% of the observed irreversible inhibition produced by HCM. Irreversible inhibition by HCM can also be prevented by co-incubation with hemicholinium-3. Co-incubation with hemicholinium-3 results in residual HACU inhibition that decreases from 51% (HCM alone) to 28% (HCM + hemicholinium-3). When atropine instead of hemicholinium-3 is co-incubated with HCM, HCM still inhibits 40% of transport, demonstrating the pharmacological specificity of the protective effect of hemicholinium-3. Experiments in the guinea-pig myenteric plexus preparation demonstrate a gradual recovery from the residual effects of HCM. Evoked ACh release decreases to 24% immediately following treatment with 1 microM HCM. After 2 hr of recovery, tissues have recovered to about 50% of control levels, after which recovery continues at a slower rate.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008297 Male Males
D009197 Myenteric Plexus One of two ganglionated neural networks which together form the ENTERIC NERVOUS SYSTEM. The myenteric (Auerbach's) plexus is located between the longitudinal and circular muscle layers of the gut. Its neurons project to the circular muscle, to other myenteric ganglia, to submucosal ganglia, or directly to the epithelium, and play an important role in regulating and patterning gut motility. (From FASEB J 1989;3:127-38) Auerbach's Plexus,Auerbach Plexus,Auerbachs Plexus,Plexus, Auerbach's,Plexus, Myenteric
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D006426 Hemicholinium 3 A potent inhibitor of the high affinity uptake system for CHOLINE. It has less effect on the low affinity uptake system. Since choline is one of the components of ACETYLCHOLINE, treatment with hemicholinium can deplete acetylcholine from cholinergic terminals. Hemicholinium 3 is commonly used as a research tool in animal and in vitro experiments. Hemicholinium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016548 Prosencephalon The anterior of the three primitive cerebral vesicles of the embryonic brain arising from the NEURAL TUBE. It subdivides to form DIENCEPHALON and TELENCEPHALON. (Stedmans Medical Dictionary, 27th ed) Forebrain,Forebrains
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

K H Gylys, and I Abdalah, and D J Jenden
October 1992, Journal of neurochemistry,
K H Gylys, and I Abdalah, and D J Jenden
September 1984, Journal of neurochemistry,
K H Gylys, and I Abdalah, and D J Jenden
April 1993, Journal of neurochemistry,
K H Gylys, and I Abdalah, and D J Jenden
January 1989, Neurochemistry international,
K H Gylys, and I Abdalah, and D J Jenden
March 1986, Canadian journal of physiology and pharmacology,
K H Gylys, and I Abdalah, and D J Jenden
July 1992, The Journal of comparative neurology,
K H Gylys, and I Abdalah, and D J Jenden
April 1976, Life sciences,
Copied contents to your clipboard!