Anatomical relationships between aromatase and tyrosine hydroxylase in the quail brain: double-label immunocytochemical studies. 1998

J Balthazart, and A Foidart, and M Baillien, and N Harada, and G F Ball
University of Liège, Laboratory of Biochemistry, Belgium. jbalthazart@ulg.ac.be

The activation of male sexual behavior in Japanese quail (Coturnix japonica) requires the transformation of testosterone to 17beta-estradiol by the enzyme aromatase (estrogen synthetase). There are prominent sex differences in aromatase activity that may be regulated in part by sex differences in catecholaminergic activity. In this study, we investigate, with double-label immunocytochemistry methods, the anatomical relationship between the catecholamine synthesizing enzyme, tyrosine hydroxylase (TH) and aromatase (ARO) in the quail brain. The immunoreactivity observed for each antigen generally matched the previously described distribution. One exception is the observation that cells weakly labeled for aromatase were found widely distributed throughout the telencephalon. The presence of telencephalic aromatase was confirmed independently by radioenzymatic assays. There was an extensive overlap between the distribution of the two antigens in many brain areas. In all densely labeled aromatase-immunoreactive (ARO-ir) cell groups, including the preoptic medial nucleus, nucleus of the stria terminalis, mediobasal hypothalamus, and paleostriatum ventrale, ARO-ir cells were found in close association with TH-ir fibers. These TH-ir fibers often converged on an ARO-ir cell, and one or more TH-ir punctate structure(s) were found in close contact with nearly every densely labeled ARO-ir cell. In the telencephalon (mostly the neostriatum), all TH-ir fibers were found to be part of fiber groups that surrounded weakly immunoreactive aromatase cells. The few cells exhibiting an intracellular colocalization were detected in the anteroventral periventricular nucleus. These results are consistent with the hypothesis that catecholaminergic inputs regulate brain aromatase.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003370 Coturnix A genus of BIRDS in the family Phasianidae, order GALLIFORMES, containing the common European and other Old World QUAIL. Japanese Quail,Coturnix japonica,Japanese Quails,Quail, Japanese,Quails, Japanese
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001141 Aromatase An enzyme that catalyzes the desaturation (aromatization) of the ring A of C19 androgens and converts them to C18 estrogens. In this process, the 19-methyl is removed. This enzyme is membrane-bound, located in the endoplasmic reticulum of estrogen-producing cells of ovaries, placenta, testes, adipose, and brain tissues. Aromatase is encoded by the CYP19 gene, and functions in complex with NADPH-FERRIHEMOPROTEIN REDUCTASE in the cytochrome P-450 system. CYP19,Cytochrome P-450 CYP19,Cytochrome P-450(AROM),Androstenedione Aromatase,CYP 19,CYP19 Protein,Cytochrome P450 19,Estrogen Synthase,Estrogen Synthetase,P450AROM,Aromatase, Androstenedione,Cytochrome P 450 CYP19,Protein, CYP19
D014446 Tyrosine 3-Monooxygenase An enzyme that catalyzes the conversion of L-tyrosine, tetrahydrobiopterin, and oxygen to 3,4-dihydroxy-L-phenylalanine, dihydrobiopterin, and water. EC 1.14.16.2. Tyrosine Hydroxylase,3-Monooxygenase, Tyrosine,Hydroxylase, Tyrosine,Tyrosine 3 Monooxygenase

Related Publications

J Balthazart, and A Foidart, and M Baillien, and N Harada, and G F Ball
March 1993, The Journal of comparative neurology,
J Balthazart, and A Foidart, and M Baillien, and N Harada, and G F Ball
February 1983, Journal of the neurological sciences,
J Balthazart, and A Foidart, and M Baillien, and N Harada, and G F Ball
August 1989, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
J Balthazart, and A Foidart, and M Baillien, and N Harada, and G F Ball
February 2014, Hormones and behavior,
J Balthazart, and A Foidart, and M Baillien, and N Harada, and G F Ball
September 2000, Journal of neuroendocrinology,
J Balthazart, and A Foidart, and M Baillien, and N Harada, and G F Ball
May 1993, Experimental neurology,
J Balthazart, and A Foidart, and M Baillien, and N Harada, and G F Ball
October 1976, Biochimica et biophysica acta,
Copied contents to your clipboard!