Extracellular K+ activates a K(+)- and H(+)-permeable conductance in frog taste receptor cells. 1998

S S Kolesnikov, and R F Margolskee
Howard Hughes Medical Institute, New York, NY, USA.

1. The effect of extracellular K+ on membrane currents of bull frog (Rana catesbeiana) taste receptor cells (TRCs) was investigated by the patch clamp and fast perfusion techniques. Extracellular K+ (2.5-90 mM) increased a TRC resting conductance and enhanced both inward and outward whole-cell currents. 2. To isolate the inward current activated by external potassium (PA current), TRCs were dialysed with 110 mM NMGCl while extracellular NaCl was replaced with NMGCl. Under these conditions, the PA current displayed an S-shaped current-voltage (I-V) curve in the -100 to 100 mV range. Extracellular Rb+ and NH4+, but not Li+, Na+ or Cs+, evoked similar currents. 3. The PA current reversal potential (Vr) did not follow the equilibrium K+ potential under experimental conditions. Therefore, K+ ions were not the only current carriers. The influence of other ions on the PA current Vr indicated that the channels involved are permeable to K+ and H+ and much less so to Na+, Ca2+ and Mg2+. Relative permeabilities were estimated on the basis of the Goldman-Hodgkin-Katz equation as follows: PH:PK:PNa = 4000:1:0.04. 4. All I-V curves of the PA current were nearly linear at low negative potentials. The slope conductance at these voltages was used to characterize the dependence of the PA current on external K+ and H+. The slope conductance versus K+ concentration was fitted by the Hill equation. The data yielded a half-maximal concentration, K1/2 = 19 +/- 3 mM and a Hill coefficient, nH = 1.53 +/- 0.36 (means +/- S.E.M.). 5. The dependence of the mean PA current and the current variance on the K+ concentration indicated a rise in the open probability of the corresponding channels as extracellular K+ was increased. With 110 mM KCl in the bath, the single channel conductance was estimated at about 6 pS. Taken together, the data suggest that extracellular K+ may serve as a ligand to activate specific small-conductance cation channels (PA channels). The mean number of the PA channels per TRC was estimated as at least 2000. 6. Extracellular Ba2+, Cd2+, Co2+, Ni2+ and Cs+ blocked the PA current in a potential-dependent manner. The PA current was blocked by Cs+ as quickly as the blocker could be applied (approximately 15 ms). The time course of the divalent cation block was well fitted by a single exponential function. The time constants were estimated at 26.5 +/- 1.9, 41.7 +/- 3.1, 56.1 +/- 4.2 and 370 +/- 18 ms at 1 mM Cd2+, Co2+, Ni2+ and Ba2+, respectively. The blocker efficiency at negative voltages followed the sequence: Cs+ > Cd2+ > Ba2+ > Ni2+ > Co2+. 7. The data indicate that protons and divalent blockers act within the PA channel pore and that H+ and the divalent ions probably act via similar mechanisms to affect the PA current. These observations and the strong pH dependence of the PA current Vr suggest that H+ occupation of the PA channel pore leading to interruption of K+ flux is the main mechanism of the pH dependence of the PA current. 8. Extracellular K+ enhanced the sensitivity of isolated TRCs to bath solution acidification due to activation of the PA channels. With 10 mM K+ in the bath, half-maximal depolarization of the TRCs was observed at pH values of 6.4-6.8. The possible role of the PA channels in sour transduction is discussed.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011892 Rana catesbeiana A species of the family Ranidae (true frogs). The only anuran properly referred to by the common name "bullfrog", it is the largest native anuran in North America. Bullfrog,Bullfrogs,Rana catesbeianas,catesbeiana, Rana
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D006859 Hydrogen The first chemical element in the periodic table with atomic symbol H, and atomic number 1. Protium (atomic weight 1) is by far the most common hydrogen isotope. Hydrogen also exists as the stable isotope DEUTERIUM (atomic weight 2) and the radioactive isotope TRITIUM (atomic weight 3). Hydrogen forms into a diatomic molecule at room temperature and appears as a highly flammable colorless and odorless gas. Protium,Hydrogen-1
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

S S Kolesnikov, and R F Margolskee
January 2000, Membrane & cell biology,
S S Kolesnikov, and R F Margolskee
April 1999, Neuroscience letters,
S S Kolesnikov, and R F Margolskee
December 1994, Hearing research,
S S Kolesnikov, and R F Margolskee
October 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S S Kolesnikov, and R F Margolskee
January 1999, Biofizika,
S S Kolesnikov, and R F Margolskee
October 2009, Plant signaling & behavior,
S S Kolesnikov, and R F Margolskee
April 1996, Brain research,
Copied contents to your clipboard!