prdl-a, a gene marker for hydra apical differentiation related to triploblastic paired-like head-specific genes. 1998

D Gauchat, and S Kreger, and T Holstein, and B Galliot
Department of Zoology and Animal Biology, University of Geneva, Switzerland.

Two homeobox genes, prdl-a and prdl-b, which were isolated from a Hydra vulgaris cDNA library, encode paired-like class homeodomains highly related to that of the aristaless-related genes. In adult polyps, prdl-b is a marker for synchronously dividing nematoblasts while prdl-a displays an expression restricted to the the nerve cell lineage of the head region. During budding and apical regeneration, an early and transient prdl-a expression was observed in endodermal cells of the stump at a time when the head organizer is established. When apical regeneration was delayed upon concomittant budding, prdl-a expression was found to be altered in the stump. Furthermore, a specific anti-prdl-a protein immunoserum revealed that prdl-a was overexpressed in adult polyps of the Chlorohydra viridissima multiheaded mutant, with an expression domain extending below the tentacle ring towards the body column. Accordingly, prdl-a DNA-binding activity was enhanced in nuclear extracts from this mutant. These results suggest that prdl-a responds to apical forming signals and might thus be involved in apical specification. When a marine hydrozoan (Podocorynae carnea) was used, the anti-prdl-a antibody showed cross-reactivity with cells located around the oral region, indicating that prdl-a function is shared by other cnidaria. The ancestral role for prdl-a-related genes in the molecular definition of the head (or oral-surrounding region) is discussed.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004475 Ectoderm The outer of the three germ layers of an embryo. Apical Ectodermal Ridge,Apical Ectodermal Ridges,Ectodermal Ridge, Apical,Ectoderms
D005801 Genes, Homeobox Genes that encode highly conserved TRANSCRIPTION FACTORS that control positional identity of cells (BODY PATTERNING) and MORPHOGENESIS throughout development. Their sequences contain a 180 nucleotide sequence designated the homeobox, so called because mutations of these genes often results in homeotic transformations, in which one body structure replaces another. The proteins encoded by homeobox genes are called HOMEODOMAIN PROTEINS. Genes, Homeotic,Homeobox Sequence,Homeotic Genes,Genes, Homeo Box,Homeo Box,Homeo Box Sequence,Homeo Boxes,Homeobox,Homeoboxes,Hox Genes,Sequence, Homeo Box,Gene, Homeo Box,Gene, Homeobox,Gene, Homeotic,Gene, Hox,Genes, Hox,Homeo Box Gene,Homeo Box Genes,Homeo Box Sequences,Homeobox Gene,Homeobox Genes,Homeobox Sequences,Homeotic Gene,Hox Gene,Sequence, Homeobox,Sequences, Homeo Box,Sequences, Homeobox
D006257 Head The upper part of the human body, or the front or upper part of the body of an animal, typically separated from the rest of the body by a neck, and containing the brain, mouth, and sense organs. Heads
D006829 Hydra A genus of freshwater polyps in the family Hydridae, order Hydroida, class HYDROZOA. They are of special interest because of their complex organization and because their adult organization corresponds roughly to the gastrula of higher animals. Hydras
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

D Gauchat, and S Kreger, and T Holstein, and B Galliot
December 1996, Differentiation; research in biological diversity,
D Gauchat, and S Kreger, and T Holstein, and B Galliot
December 1995, Gene,
D Gauchat, and S Kreger, and T Holstein, and B Galliot
October 2000, Cellular signalling,
D Gauchat, and S Kreger, and T Holstein, and B Galliot
February 1998, Development genes and evolution,
D Gauchat, and S Kreger, and T Holstein, and B Galliot
June 1990, Differentiation; research in biological diversity,
D Gauchat, and S Kreger, and T Holstein, and B Galliot
October 1991, Developmental biology,
D Gauchat, and S Kreger, and T Holstein, and B Galliot
September 1994, Development (Cambridge, England),
D Gauchat, and S Kreger, and T Holstein, and B Galliot
November 1997, Neuron,
D Gauchat, and S Kreger, and T Holstein, and B Galliot
May 1997, Proceedings of the National Academy of Sciences of the United States of America,
D Gauchat, and S Kreger, and T Holstein, and B Galliot
March 1999, Development genes and evolution,
Copied contents to your clipboard!