Synergistic activation of adenylate cyclase by guanylyl imidophosphate and epinephrine. 1976

N Sevilla, and M L Steer, and A Levitzki

A kinetic analysis of the synergistic activation of turkey erythrocyte adenylate cyclase by 1-catecholamines and guanylyl imidodiphosphate (Gpp(NH)p) is described. We have found that the role of the catecholamine hormone is to facilitate the activation of the enzyme by the guanyl nucleotide according to the following mechanism: R-E+G=R-EG R-EG+H=HR-EG leads to HR-E''G where R is the receptor, E the enzyme, G the guanyl nucleotide effector, and H the hormone. The binding steps are fast and reversible but the conversion of the inactive enzyme E to its active stable form (E'') occurs with a rate constant of k=0.7 min-1. This step is essentially irreversible in the presence of high Gpp(NH)p concentrations. In the absence of beta-agonist (1-catecholamine) and at low free Mg2+ concentrations, the activation of the enzyme is insignificant. At high Mg2+ concentration the conversion of E to E'' occurs slowly in the absence of hormone, probably by another pathway. Thus, the presence of a guanyl nucleotide at the allosteric site is obligatory but not sufficient to induce the conversion of the inactive enzyme to its active form. The process of enzyme activation requires both Gpp(NH)p and hormone and under these conditions is essentially irreversible. The permanently active enzyme is stable in the absence of hormone and Gpp(NH)p and its high catalytic activity is stable for many hours. However, hormone and ATP induce a conversion of the high activity to the low activity form. Thus, it seems that both the process of enzyme activation by Gpp(NH)p and its reversal are hormone dependent. Both processes are blocked by the beta-blocker propranolol.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine

Related Publications

N Sevilla, and M L Steer, and A Levitzki
November 1977, Biokhimiia (Moscow, Russia),
N Sevilla, and M L Steer, and A Levitzki
July 1983, Biochimica et biophysica acta,
N Sevilla, and M L Steer, and A Levitzki
January 1983, Neurochemistry international,
N Sevilla, and M L Steer, and A Levitzki
October 1974, The Journal of biological chemistry,
N Sevilla, and M L Steer, and A Levitzki
March 1978, The Journal of investigative dermatology,
N Sevilla, and M L Steer, and A Levitzki
June 1975, The Journal of biological chemistry,
N Sevilla, and M L Steer, and A Levitzki
April 1977, The Journal of biological chemistry,
N Sevilla, and M L Steer, and A Levitzki
November 1975, The Journal of clinical investigation,
N Sevilla, and M L Steer, and A Levitzki
January 1978, FEBS letters,
Copied contents to your clipboard!