Effects of mutations in the polymerase domain on the polymerase, RNase H and strand transfer activities of human immunodeficiency virus type 1 reverse transcriptase. 1998

H Q Gao, and P L Boyer, and E Arnold, and S H Hughes
ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, MD 21702-1201, USA.

Based on structural analyses and on the behavior of mutants, we suggest that the polymerase domain of HIV-1 reverse transcriptase (RT) plays a critical role in holding and appropriately positioning the template-primer both at the polymerase active site and at the RNase H active site. For RT to successfully copy the viral RNA genome, RNase H must cleave the RNA with absolute precision. We believe that a combination of the structure of the template-primer and its precise positioning are responsible for the specific cleavages RNase H makes. We have proposed that resistance of HIV-1 RT to nucleoside analogs involves a subtle repositioning of the template-primer. This hypothesis is based on both structural and biochemical analyses. Mutations that confer resistance to nucleoside analogs do not cluster at the polymerase active site; however, they are in positions where they could alter the interaction between RT and the template-primer. If, as we have hypothesized, the polymerase domain is primarily responsible for positioning the template-primer and RNase H cleavage depends on this positioning, it should be possible to use RNase H cleavage to monitor at least some of the major changes in the position of the template-primer. We have used three assays (polymerase, RNase H, and strand transfer) to investigate the effects of mutations in the polymerase domain, including mutations that confer resistance to nucleotide analogs, on HIV-1 RT. All three assays involve RNA sequences derived from the viral genome. The data show that alterations in the polymerase domain, in particular, mutations that are in positions that would be expected to alter the interaction of RT with the template-primer, can alter both the efficiency and specificity of RNase H cleavage. These results are discussed in light of the structure of HIV-1 RT.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D016296 Mutagenesis Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS. Mutageneses

Related Publications

H Q Gao, and P L Boyer, and E Arnold, and S H Hughes
January 1991, The Journal of general virology,
H Q Gao, and P L Boyer, and E Arnold, and S H Hughes
November 1992, Proceedings of the National Academy of Sciences of the United States of America,
H Q Gao, and P L Boyer, and E Arnold, and S H Hughes
December 2005, Antimicrobial agents and chemotherapy,
H Q Gao, and P L Boyer, and E Arnold, and S H Hughes
August 1991, The Journal of biological chemistry,
H Q Gao, and P L Boyer, and E Arnold, and S H Hughes
September 1994, Journal of virology,
H Q Gao, and P L Boyer, and E Arnold, and S H Hughes
August 1999, Journal of virology,
H Q Gao, and P L Boyer, and E Arnold, and S H Hughes
July 2014, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!