Shortening of monophasic action potential duration during hyperkalemia and myocardial ischemia in anesthetized dogs. 1998

K Hamada, and J Yamazaki, and T Nagao
Laboratory of Pharmacology and Toxicology Graduate School of Pharmaceutical Sciences, University of Tokyo, Japan.

The elevation of the myocardial extracellular potassium concentration ([K+]o) is known to shorten action potential duration, which may lead to the occurrence of arrhythmias. The aim of this study was to compare the mechanisms responsible for the shortening of monophasic action potential duration (MAPD) in hyperkalemic and myocardial ischemic hearts in anesthetized dogs. During a venous infusion of KCl for 5 min, [K+]o was increased and MAPD was significantly shortened. The ATP-sensitive K+ (K[ATP]) channel blocker glibenclamide did not affect the shortening of MAPD during KCl-infusion, indicating that K(ATP) channels are not involved in this mechanism. During 5-min occlusion of the left anterior descending coronary artery, [K+]o was increased, myocardial pH was decreased and MAPD was shortened. Glibenclamide completely abolished the shortening of MAPD, while partial elevation of [K+]o remained even in the presence of glibenclamide. This suggests that the shortening of MAPD is dependent mainly on the activation of K(ATP) channels. Both models in the present study demonstrate that different types of potassium channels are involved in the regulation of action potential duration.

UI MeSH Term Description Entries
D008297 Male Males
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005260 Female Females
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D006947 Hyperkalemia Abnormally high potassium concentration in the blood, most often due to defective renal excretion. It is characterized clinically by electrocardiographic abnormalities (elevated T waves and depressed P waves, and eventually by atrial asystole). In severe cases, weakness and flaccid paralysis may occur. (Dorland, 27th ed) Hyperpotassemia,Hyperkalemias,Hyperpotassemias
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Hamada, and J Yamazaki, and T Nagao
April 1989, The American journal of physiology,
K Hamada, and J Yamazaki, and T Nagao
June 1991, Pacing and clinical electrophysiology : PACE,
K Hamada, and J Yamazaki, and T Nagao
February 2000, Naunyn-Schmiedeberg's archives of pharmacology,
K Hamada, and J Yamazaki, and T Nagao
July 1979, Japanese heart journal,
K Hamada, and J Yamazaki, and T Nagao
January 1991, Progress in cardiovascular diseases,
K Hamada, and J Yamazaki, and T Nagao
June 1976, Circulation research,
Copied contents to your clipboard!