| D001854 |
Bone Marrow Cells |
Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. |
Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone |
|
| D002455 |
Cell Division |
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. |
M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D012333 |
RNA, Messenger |
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. |
Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated |
|
| D014407 |
Tumor Cells, Cultured |
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. |
Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured |
|
| D015854 |
Up-Regulation |
A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. |
Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation |
|
| D016133 |
Polymerase Chain Reaction |
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. |
Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain |
|
| D016188 |
Receptors, Granulocyte Colony-Stimulating Factor |
Receptors that bind and internalize GRANULOCYTE COLONY-STIMULATING FACTOR. Their MW is believed to be 150 kD. These receptors are found mainly on a subset of myelomonocytic cells. |
G-CSF Receptors,G-CSF Receptor,Granulocyte Colony-Stimulating Factor Receptors,Receptor, Granulocyte Colony-Stimulating Factor,Receptors, G-CSF,G CSF Receptor,G CSF Receptors,Granulocyte Colony Stimulating Factor Receptors,Receptor, G-CSF,Receptor, Granulocyte Colony Stimulating Factor,Receptors, G CSF,Receptors, Granulocyte Colony Stimulating Factor |
|
| D016760 |
Proto-Oncogene Proteins c-fos |
Cellular DNA-binding proteins encoded by the c-fos genes (GENES, FOS). They are involved in growth-related transcriptional control. c-fos combines with c-jun (PROTO-ONCOGENE PROTEINS C-JUN) to form a c-fos/c-jun heterodimer (TRANSCRIPTION FACTOR AP-1) that binds to the TRE (TPA-responsive element) in promoters of certain genes. |
Fos B Protein,Fos-Related Antigen,Fos-Related Antigens,c-fos Protein,c-fos Proteins,fos Proto-Oncogene Protein,fos Proto-Oncogene Proteins,p55(c-fos),Antigens, Fos-Related,FRAs,Proto-Oncogene Products c-fos,Proto-Oncogene Proteins fos,p55 c-fos,Antigen, Fos-Related,Fos Related Antigen,Fos Related Antigens,Protein, c-fos,Protein, fos Proto-Oncogene,Proto Oncogene Products c fos,Proto Oncogene Proteins c fos,Proto Oncogene Proteins fos,Proto-Oncogene Protein, fos,c fos Protein,c fos Proteins,fos Proto Oncogene Protein,fos Proto Oncogene Proteins,p55 c fos |
|
| D018922 |
HL-60 Cells |
A promyelocytic cell line derived from a patient with ACUTE PROMYELOCYTIC LEUKEMIA. HL-60 cells lack specific markers for LYMPHOID CELLS but express surface receptors for FC FRAGMENTS and COMPLEMENT SYSTEM PROTEINS. They also exhibit phagocytic activity and responsiveness to chemotactic stimuli. (From Hay et al., American Type Culture Collection, 7th ed, pp127-8) |
HL60 Cells,Cell, HL60,Cells, HL60,HL 60 Cells,HL-60 Cell,HL60 Cell |
|