Regulation of molybdate transport by Clostridium pasteurianum. 1976

B B Elliott, and L E Mortenson

The regulation of the molybdate (MoO42-) transport activity of Clostridium pasteurianum has been studied by observing the effects of NH3, carbamyl phosphate, MoO42-, and chloramphenicol on the ability of cells to take up MoO42-. Compared with cells fixing N2, cells grown in the presence of 1 mM NH3 are greater than 95% repressed for MoO42- transport. Uptake activity begins to increase just before NH exhaustion (under Ar or N2) and continues to increase throughout the lag period as cells shift from NH3-growing to N2-fixing conditions. When cells are shifted from N2-fixing to NH3-growing conditions the transport activity per fixed number of cells decreases by increase of bells in absence of transport synthesis. Carbamyl phosphate (greater than or equal to 15 mM) but not NH3 inhibits 58% of the in vitro uptake activity. When 1 mM carbamyl phosphate is added just before the exhaustion of NH3, the transport activity, measured 2 h later, is 100% repressed. Cells grown in the presence of high MoO42- (1mM) are 80% repressed for MoO42- transport. Synthesis of the MoO42- transport system is also completely stopped when chloramphenicol (300 mug/ml) is added just before the exhaustion oNH 3 from the medium. These findings demonstrate that the ability of cells to transport MoO42- is dependent upon new protein synthesis and can be repressed by high levels of substrate. The regulation of MoO42- uptake by NH3 or carbamyl phosphate closely parallels the regulation of nitrogenase activity. Activity of neither nitrogenase component (Fe protein or MoFe protein) was detected even 3 h after the exhaustion of the NH3 if either MoO42- was absent or if WO42- was present in place of MoO42-. The duration of the diauxic lag increases with decreasing concentration of MoO42- in the medium. If no MoO42- is present the lag continues indefinitely. If MoO42- is added late in the lag period, growth under N2-fixing conditions resumes but only after a normal induction period.

UI MeSH Term Description Entries
D008982 Molybdenum A metallic element with the atomic symbol Mo, atomic number 42, and atomic weight 95.95. It is an essential trace element, being a component of the enzymes xanthine oxidase, aldehyde oxidase, and nitrate reductase. Molybdenum-98,Molybdenum 98
D009586 Nitrogen Fixation The process in certain BACTERIA; FUNGI; and CYANOBACTERIA converting free atmospheric NITROGEN to biologically usable forms of nitrogen, such as AMMONIA; NITRATES; and amino compounds. Diazotrophy,Diazotrophic Activity,Dinitrogen Fixation,N2 Fixation,Activities, Diazotrophic,Activity, Diazotrophic,Diazotrophic Activities,Fixation, Dinitrogen,Fixation, N2,Fixation, Nitrogen
D009591 Nitrogenase An enzyme system that catalyzes the fixing of nitrogen in soil bacteria and blue-green algae (CYANOBACTERIA). EC 1.18.6.1. Dinitrogenase,Vanadium Nitrogenase,Nitrogenase, Vanadium
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002221 Carbamyl Phosphate The monoanhydride of carbamic acid with PHOSPHORIC ACID. It is an important intermediate metabolite and is synthesized enzymatically by CARBAMYL-PHOSPHATE SYNTHASE (AMMONIA) and CARBAMOYL-PHOSPHATE SYNTHASE (GLUTAMINE-HYDROLYZING). Carbamoyl Phosphate,Dilithium Carbamyl Phosphate,Carbamyl Phosphate, Dilithium,Phosphate, Carbamoyl,Phosphate, Carbamyl,Phosphate, Dilithium Carbamyl
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D003013 Clostridium A genus of motile or nonmotile gram-positive bacteria of the family Clostridiaceae. Many species have been identified with some being pathogenic. They occur in water, soil, and in the intestinal tract of humans and lower animals.
D000114 Acetylene The simplest two carbon alkyne with the formula HCCH. Ethyne
D000641 Ammonia A colorless alkaline gas. It is formed in the body during decomposition of organic materials during a large number of metabolically important reactions. Note that the aqueous form of ammonia is referred to as AMMONIUM HYDROXIDE.
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill

Related Publications

B B Elliott, and L E Mortenson
January 1988, Journal of bacteriology,
B B Elliott, and L E Mortenson
January 1982, Bioscience reports,
B B Elliott, and L E Mortenson
June 1962, Biochemical and biophysical research communications,
B B Elliott, and L E Mortenson
November 1972, The Biochemical journal,
B B Elliott, and L E Mortenson
April 1989, Canadian journal of microbiology,
B B Elliott, and L E Mortenson
November 1975, Canadian journal of microbiology,
B B Elliott, and L E Mortenson
November 1997, Archives of microbiology,
B B Elliott, and L E Mortenson
December 1974, The Biochemical journal,
B B Elliott, and L E Mortenson
January 2019, Molecular microbiology,
B B Elliott, and L E Mortenson
January 1979, Biochemical and biophysical research communications,
Copied contents to your clipboard!