Curcumin and curcumin derivatives inhibit Tat-mediated transactivation of type 1 human immunodeficiency virus long terminal repeat. 1998

S Barthelemy, and L Vergnes, and M Moynier, and D Guyot, and S Labidalle, and E Bahraoui
Laboratoire de Synthèse, Physico-Chimie et Radiobiologie, Faculté de Pharmacie, Toulouse, France.

The transcription of HIV1 provirus is regulated by both cellular and viral factors. Various evidence suggests that Tat protein secreted by HIV1-infected cells may have additional action in the pathogenesis of AIDS because of its ability to also be taken up by non-infected cells. Curcumin [diferuloylmethane or 1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] is the yellow pigment in turmeric Curcuma longa (Linn). It exhibits a variety of pharmacological effects including antiinflammatory and antiretroviral activities. Here, we demonstrated that curcumin used at 10 to 100 nM inhibited Tat transactivation of HIV1-LTR lacZ by 70 to 80% in HeLa cells. In order to develop more efficient curcumin derivatives, we synthesized and tested in the same experimental system the inhibitory activity of reduced curcumin (C1), which lacks the spatial structure of curcumin; allyl-curcumin (C2), which possesses a condensed allyl derivative on curcumin that plays the role of metal chelator; and tocopheryl-curcumin (C3), which enhances the antioxidant activity of the molecule. Results obtained with C1, C2 and C3 curcumin derivatives showed a significant inhibition (70 to 85%) of Tat transactivation. Despite the fact that tocopheryl-curcumin (C3) failed to scavenge O2.-, this curcumin derivative exhibited the most activity; 70% inhibition was obtained at 1 nM, while only 35% inhibition was obtained with the curcumin.

UI MeSH Term Description Entries
D003474 Curcumin A yellow-orange dye obtained from tumeric, the powdered root of CURCUMA longa. It is used in the preparation of curcuma paper and the detection of boron. Curcumin appears to possess a spectrum of pharmacological properties, due primarily to its inhibitory effects on metabolic enzymes. 1,6-Heptadiene-3,5-dione, 1,7-bis(4-hydroxy-3-methoxyphenyl)-, (E,E)-,Curcumin Phytosome,Diferuloylmethane,Mervia,Turmeric Yellow,Phytosome, Curcumin,Yellow, Turmeric
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D015533 Transcriptional Activation Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes. Gene Activation,Genetic Induction,Transactivation,Induction, Genetic,Trans-Activation, Genetic,Transcription Activation,Activation, Gene,Activation, Transcription,Activation, Transcriptional,Genetic Trans-Activation,Trans Activation, Genetic
D015696 Gene Products, tat Trans-acting transcription factors produced by retroviruses such as HIV. They are nuclear proteins whose expression is required for viral replication. The tat protein stimulates LONG TERMINAL REPEAT-driven RNA synthesis for both viral regulatory and viral structural proteins. Tat stands for trans-activation of transcription. tat Gene Products,tat Protein,Gene Product, tat,tat Gene Product
D016166 Free Radical Scavengers Substances that eliminate free radicals. Among other effects, they protect PANCREATIC ISLETS against damage by CYTOKINES and prevent myocardial and pulmonary REPERFUSION INJURY. Free Radical Scavenger,Radical Scavenger, Free,Scavenger, Free Radical,Scavengers, Free Radical
D016325 HIV Long Terminal Repeat Regulatory sequences important for viral replication that are located on each end of the HIV genome. The LTR includes the HIV ENHANCER, promoter, and other sequences. Specific regions in the LTR include the negative regulatory element (NRE), NF-kappa B binding sites , Sp1 binding sites, TATA BOX, and trans-acting responsive element (TAR). The binding of both cellular and viral proteins to these regions regulates HIV transcription. HIV Negative Regulatory Element,HIV Sp1-Binding Site,HIV Trans-Acting Responsive Region,Human Immunodeficiency Virus Long Terminal Repeat,Long Terminal Repeat, HIV,Negative Regulatory Element, HIV,Sp1-Binding Site, HIV,Trans-Acting Responsive Region, HIV,HIV-1 LTR,Human Immunodeficiency Virus LTR,LTR, Human Immunodeficiency Virus,TAR Element, HIV,Trans-Activation Responsive Element, HIV,Trans-Activation Responsive Region, HIV,HIV 1 LTR,HIV Sp1 Binding Site,HIV Sp1-Binding Sites,HIV TAR Element,HIV TAR Elements,HIV Trans Acting Responsive Region,LTR, HIV-1,Sp1 Binding Site, HIV,Sp1-Binding Sites, HIV,TAR Elements, HIV,Trans Acting Responsive Region, HIV,Trans Activation Responsive Element, HIV,Trans Activation Responsive Region, HIV

Related Publications

S Barthelemy, and L Vergnes, and M Moynier, and D Guyot, and S Labidalle, and E Bahraoui
August 2010, Journal of cellular biochemistry,
S Barthelemy, and L Vergnes, and M Moynier, and D Guyot, and S Labidalle, and E Bahraoui
April 2002, Virology,
S Barthelemy, and L Vergnes, and M Moynier, and D Guyot, and S Labidalle, and E Bahraoui
March 1994, The Journal of biological chemistry,
S Barthelemy, and L Vergnes, and M Moynier, and D Guyot, and S Labidalle, and E Bahraoui
December 2011, Journal of cellular physiology,
S Barthelemy, and L Vergnes, and M Moynier, and D Guyot, and S Labidalle, and E Bahraoui
August 1991, Journal of virology,
S Barthelemy, and L Vergnes, and M Moynier, and D Guyot, and S Labidalle, and E Bahraoui
December 1993, Proceedings of the National Academy of Sciences of the United States of America,
S Barthelemy, and L Vergnes, and M Moynier, and D Guyot, and S Labidalle, and E Bahraoui
January 1992, The Journal of biological chemistry,
S Barthelemy, and L Vergnes, and M Moynier, and D Guyot, and S Labidalle, and E Bahraoui
April 1992, Journal of virology,
S Barthelemy, and L Vergnes, and M Moynier, and D Guyot, and S Labidalle, and E Bahraoui
December 1990, Journal of virology,
S Barthelemy, and L Vergnes, and M Moynier, and D Guyot, and S Labidalle, and E Bahraoui
September 1989, Journal of virology,
Copied contents to your clipboard!