Analysis of the molecular mechanism of substrate-mediated inactivation of leukotriene A4 hydrolase. 1998

M J Mueller, and M Andberg, and J Z Haeggström
Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, S-171 77 Stockholm, Sweden.

The bifunctional leukotriene A4 hydrolase catalyzes the final step in the biosynthesis of the proinflammatory leukotriene B4. During exposure to the substrate leukotriene A4, a labile allylic epoxide, the enzyme is gradually inactivated as a consequence of the covalent binding of leukotriene A4 to the active site. This phenomenon, commonly referred to as suicide inactivation, has previously been rationalized as a mechanism-based process in which the enzyme converts the substrate to a highly reactive intermediate within an activated enzyme-substrate complex that partitions between covalent bond formation (inactivation) and catalysis. To further explore the molecular mechanism of the self-inactivation of leukotriene A4 hydrolase by leukotriene A4, we prepared and analyzed mutated forms of the enzyme that were either catalytically incompetent or fully active but resistant toward substrate-mediated inactivation. These mutants were treated with leukotriene A4 and leukotriene A4 methyl and ethyl esters and subjected to differential peptide mapping and enzyme activity determinations, which showed that inactivation and/or covalent modification can be completely dissociated from catalysis. Our results, together with recent findings described in the literature, argue against a mechanism-based model for suicide inactivation. We conclude that the collected data on the substrate-mediated inactivation of leukotriene A4 hydrolase best conforms to an affinity-labeling mechanism.

UI MeSH Term Description Entries
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004851 Epoxide Hydrolases Enzymes that catalyze reversibly the formation of an epoxide or arene oxide from a glycol or aromatic diol, respectively. Epoxide Hydrase,Epoxide Hydrases,Epoxide Hydratase,Epoxide Hydratases,Epoxide Hydrolase,9,10-Epoxypalmitic Acid Hydrase,Microsomal Epoxide Hydrolase,Styrene Epoxide Hydrolase,9,10 Epoxypalmitic Acid Hydrase,Acid Hydrase, 9,10-Epoxypalmitic,Epoxide Hydrolase, Microsomal,Epoxide Hydrolase, Styrene,Hydrase, 9,10-Epoxypalmitic Acid,Hydrase, Epoxide,Hydrases, Epoxide,Hydratase, Epoxide,Hydratases, Epoxide,Hydrolase, Epoxide,Hydrolase, Microsomal Epoxide,Hydrolase, Styrene Epoxide,Hydrolases, Epoxide
D004852 Epoxy Compounds Organic compounds that include a cyclic ether with three ring atoms in their structure. They are commonly used as precursors for POLYMERS such as EPOXY RESINS. Epoxide,Epoxides,Epoxy Compound,Oxiranes,Compound, Epoxy,Compounds, Epoxy
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

M J Mueller, and M Andberg, and J Z Haeggström
November 1992, The Journal of biological chemistry,
M J Mueller, and M Andberg, and J Z Haeggström
November 1994, Annals of the New York Academy of Sciences,
M J Mueller, and M Andberg, and J Z Haeggström
September 1990, The Journal of biological chemistry,
M J Mueller, and M Andberg, and J Z Haeggström
August 1995, Proceedings of the National Academy of Sciences of the United States of America,
M J Mueller, and M Andberg, and J Z Haeggström
July 1987, The Journal of biological chemistry,
M J Mueller, and M Andberg, and J Z Haeggström
June 1996, Proceedings of the National Academy of Sciences of the United States of America,
M J Mueller, and M Andberg, and J Z Haeggström
August 2002, Prostaglandins & other lipid mediators,
M J Mueller, and M Andberg, and J Z Haeggström
December 2012, Chemical biology & drug design,
M J Mueller, and M Andberg, and J Z Haeggström
February 2014, Biochimica et biophysica acta,
M J Mueller, and M Andberg, and J Z Haeggström
January 1990, Advances in prostaglandin, thromboxane, and leukotriene research,
Copied contents to your clipboard!