Estrogen-induced genes in the uterus of ovariectomized rats and their regulation by droloxifene and tamoxifen. 1998

R Rivera-Gonzalez, and D N Petersen, and G Tkalcevic, and D D Thompson, and T A Brown
Department of Molecular Sciences, Pfizer Central Research, Groton, CT 06340, USA.

The identification and characterization of estrogen regulated genes in reproductive tissues is an important step in understanding estrogen's mechanism of action in sexual development and neoplasia. It is also important, given the clinical interest, to evaluate the molecular effects of estrogen agonists/antagonists such as tamoxifen and droloxifene in reproductive tissues. In this report, our goal was to identify estrogen regulated genes in the uterus and to compare the regulation by estrogen and tamoxifen with that of droloxifene. A subtractive cDNA library strategy was developed to identify estrogen-regulated genes in the uteri of ovariectomized rats 4 h after treatment with 17-alpha-ethynyl estradiol (30 microg/kg). The mRNAs encoding 8 genes were confirmed by Northern blot analysis to be induced at early times following estrogen administration. Calcium binding protein 9 kDa and complement protein 3 are well characterized estrogen regulated genes that were identified in the library and served as markers for estrogen action. In addition, mRNAs encoding the interleukin 4 receptor, heat-shock protein 70 kDa, metallothionein, tumor necrosis factor regulated gene 6, inositol-1-monophosphate synthase, and cyr-61 were induced in the uterus by estrogen. The identified mRNAs were then examined for regulation by droloxifene (1 and 10 mg/kg, p.o.) and tamoxifen (10 mg/kg, p.o.). Both droloxifene and tamoxifen induced mRNA levels for all of these genes. However, clear quantitative and temporal differences were observed when comparing estrogen versus droloxifene versus tamoxifen. For example, estrogen induced IL4 receptor mRNA to a greater degree than did tamoxifen or droloxifene. Conversely, tamoxifen resulted in a much greater induction of cyr61 than did either estrogen or droloxifene. Droloxifene at 1 mg/kg, an efficacious dose for prevention of bone loss in this model, did not or only slightly induced the mRNA for all of the genes examined with the exception of cyr61. In conclusion, the modified subtractive library method used in this study proved to be efficient in the identification of estrogen-regulated genes in the uterus. The identities of the regulated genes were consistent with the concept that estrogen functions to prime uterine tissue for increased responsivity to extracellular signals such as growth factors and cytokines. Elucidating the physiological role of these newly identified estrogen responsive genes and the mechanisms responsible for the different responses to droloxifene versus estrogen and tamoxifen may be important in enhancing our understanding of tissue selective estrogen agonists/antagonists.

UI MeSH Term Description Entries
D007296 Myo-Inositol-1-Phosphate Synthase An enzyme that catalyzes the formation of myo-inositol-1-phosphate from glucose-6-phosphate in the presence of NAD. EC 5.5.1.4. Cycloaldolase,Inositol Cyclase,Inositol-1-Phosphate Synthase,Cyclase, Inositol,Inositol 1 Phosphate Synthase,Myo Inositol 1 Phosphate Synthase,Synthase, Inositol-1-Phosphate,Synthase, Myo-Inositol-1-Phosphate
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010052 Ovariectomy The surgical removal of one or both ovaries. Castration, Female,Oophorectomy,Bilateral Ovariectomy,Bilateral Ovariectomies,Castrations, Female,Female Castration,Female Castrations,Oophorectomies,Ovariectomies,Ovariectomies, Bilateral,Ovariectomy, Bilateral
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D004965 Estrogen Antagonists Compounds which inhibit or antagonize the action or biosynthesis of estrogenic compounds. Estradiol Antagonists,Antagonists, Estradiol,Antagonists, Estrogen
D004997 Ethinyl Estradiol A semisynthetic alkylated ESTRADIOL with a 17-alpha-ethinyl substitution. It has high estrogenic potency when administered orally, and is often used as the estrogenic component in ORAL CONTRACEPTIVES. 19-Norpregna-1,3,5(10)-trien-20-yne-3,17-diol, (17alpha)-,Ethynyl Estradiol,Estinyl,Ethinyl Estradiol Hemihydrate,Ethinyl Estradiol, (8 alpha)-Isomer,Ethinyl Estradiol, (8 alpha,17 alpha)-Isomer,Ethinyl Estradiol, (8 alpha,9 beta,13 alpha,14 beta)-Isomer,Ethinyl Estradiol, (9 beta,17 alpha)-Isomer,Ethinyl-Oestradiol Effik,Ethinylestradiol Jenapharm,Ethinyloestradiol,Lynoral,Microfollin,Microfollin Forte,Progynon C,Estradiol, Ethinyl,Estradiol, Ethynyl,Ethinyl Oestradiol Effik,Hemihydrate, Ethinyl Estradiol,Jenapharm, Ethinylestradiol
D005260 Female Females
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

R Rivera-Gonzalez, and D N Petersen, and G Tkalcevic, and D D Thompson, and T A Brown
June 1995, Endocrinology,
R Rivera-Gonzalez, and D N Petersen, and G Tkalcevic, and D D Thompson, and T A Brown
January 1997, Bone,
R Rivera-Gonzalez, and D N Petersen, and G Tkalcevic, and D D Thompson, and T A Brown
May 2021, Journal of food biochemistry,
R Rivera-Gonzalez, and D N Petersen, and G Tkalcevic, and D D Thompson, and T A Brown
July 2004, Hypertension (Dallas, Tex. : 1979),
R Rivera-Gonzalez, and D N Petersen, and G Tkalcevic, and D D Thompson, and T A Brown
May 1975, The American journal of clinical nutrition,
R Rivera-Gonzalez, and D N Petersen, and G Tkalcevic, and D D Thompson, and T A Brown
August 1985, Japanese journal of cancer research : Gann,
R Rivera-Gonzalez, and D N Petersen, and G Tkalcevic, and D D Thompson, and T A Brown
September 1991, Bone and mineral,
R Rivera-Gonzalez, and D N Petersen, and G Tkalcevic, and D D Thompson, and T A Brown
January 2013, Drug design, development and therapy,
R Rivera-Gonzalez, and D N Petersen, and G Tkalcevic, and D D Thompson, and T A Brown
September 1969, Biology of reproduction,
R Rivera-Gonzalez, and D N Petersen, and G Tkalcevic, and D D Thompson, and T A Brown
September 2000, Neuroscience letters,
Copied contents to your clipboard!