Respiratory modulation of carotid and aortic body reflex left ventricular inotropic responses in the cat. 1998

M D Daly, and J F Jones
Autonomic Neuroscience Institute, Joint Department of Physiology, Royal Free Hospital School of Medicine and, University College London, Rowland Hill Street, London W3 2PF, UK.

1. The reflex changes in the inotropic state of the left ventricle, measured as the dP/dt max (maximum rate of change of pressure), occurring in response to selective stimulation of the carotid and aortic body chemoreceptors by sodium cyanide, were studied in the cat anaesthetized with a mixture of chloralose and urethane. 2. The animals were artificially ventilated with an open pneumothorax. The heart rate and mean arterial blood pressure were maintained constant. 3. With on-going central respiratory activity, stimulation of the carotid bodies caused an increase in respiratory movements. Variable changes in left ventricular dP/dt max occurred, the predominant response being an increase. The mean change was 8.3 +/- 2.9 % from a control value of 6850 +/- 450 mmHg s-1. Stimulation of the aortic bodies resulted in a smaller increase in respiration or no effect, but a significant increase occurred in left ventricular dP/dt max of 19.6 +/- 2.9 % from a control value of 6136 +/- 228 mmHg s-1. No significant changes in left ventricular end-diastolic pressure occurred in response to stimulation of either group of chemoreceptors. 4. Tests of chemoreceptor stimulations were repeated during temporary suppression of the secondary respiratory mechanisms: the central respiratory drive was suppressed reflexly by electrical stimulation of the central cut ends of both superior laryngeal nerves and lung stretch afferent activity was minimized by stopping artificial respiration. Carotid body stimulation again evoked variable responses, the predominant now being a reduction in left ventricular dP/dt max of 3.1 % from a control value of 5720 +/- 320 mmHg s-1, which was significantly different to that occurring during on-going spontaneous respiration. Aortic body stimulation caused an increase in left ventricular dP/dt max similar to the response during on-going spontaneous respiration. 5. The positive inotropic responses were mediated via the sympathetic nervous system, as indicated by their abolition as a result of intravenous injections of the beta-adrenoceptor blocking agent, propranolol. 6. It is concluded that the carotid bodies exert a small variable effect on left ventricular dP/dt max, the predominant positive inotropic response being due to the concomitant neurogenic effects of the increase in respiration. In contrast, the positive inotropic response to excitation of the aortic chemoreceptors is not respiratory modulated.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008297 Male Males
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D002344 Carotid Body A small cluster of chemoreceptive and supporting cells located near the bifurcation of the internal carotid artery. The carotid body, which is richly supplied with fenestrated capillaries, senses the pH, carbon dioxide, and oxygen concentrations in the blood and plays a crucial role in their homeostatic control. Glomus Caroticum,Bodies, Carotid,Body, Carotid,Caroticum, Glomus,Carotid Bodies
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005260 Female Females

Related Publications

M D Daly, and J F Jones
April 1974, The Australian journal of experimental biology and medical science,
M D Daly, and J F Jones
December 1981, The American journal of physiology,
M D Daly, and J F Jones
January 1990, The American journal of physiology,
M D Daly, and J F Jones
May 1971, The Journal of pathology,
M D Daly, and J F Jones
November 1991, Respiration physiology,
M D Daly, and J F Jones
January 1980, Acta neurobiologiae experimentalis,
Copied contents to your clipboard!