Formoterol and isoproterenol induce c-fos gene expression in osteoblast-like cells by activating beta2-adrenergic receptors. 1998

S Kellenberger, and K Muller, and H Richener, and G Bilbe
Novartis Pharma AG, Basel, Switzerland.

Formoterol, a beta2-adrenergic agonist has been shown in ovariectomized rat models to have anabolic effects on bone. However, those studies did not determine whether the effect of formoterol was by a direct action on bone cells themselves or indirectly via anabolic action on muscle. To address the question of whether formoterol could directly affect osteoblast function we investigated the expression patterns of beta3-adrenergic receptors (betaARs) in human osteoblast-like cells and functional coupling to gene expression. Northern blot analysis showed that betaAR subtypes are expressed at different levels in the osteoblast-like cell lines TE-85, SaOS-2, MG-63, and OHS-4. beta1AR expression was found in SaOS-2, OHS-4, and TE-85, but not MG-63 cells. beta2ARs are expressed at higher levels in MG-63 cells than in TE-85 and SaOS-2 cells, but were not detected in OHS-4 cells. PCR analysis paralleled the northern blot analysis except that beta3AR expression was found in one of three human primary osteoblast cDNAs tested. beta3AR expression was not found in any of the osteoblast-like cell lines. The nonspecific betaAR agonist, isoproterenol, and the beta2AR-specific agonist, formoterol, induced c-fos gene expression in cultured SaOS-2 cells in an immediate early fashion. This effect was inhibited by the beta2AR-specific antagonist, ICI 118551, but not by the beta1AR-specific antagonist, CGP 20712, indicating that induction of c-fos gene expression is specifically mediated by beta2ARs. c-fos gene expression was induced by both isoproterenol and formoterol via increases in cAMP, which in turn activated the cAMP/PKA pathway; the PKA inhibitor, H89, inhibited c-fos gene expression. Thus, betaARs are expressed in osteoblast-like cells and are coupled to c-fos gene expression via the beta2AR, increases in cAMP levels and activation of a PKA-dependent pathway.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D011412 Propanolamines AMINO ALCOHOLS containing the propanolamine (NH2CH2CHOHCH2) group and its derivatives. Aminopropanols
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004983 Ethanolamines AMINO ALCOHOLS containing the ETHANOLAMINE; (-NH2CH2CHOH) group and its derivatives. Aminoethanols
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000068759 Formoterol Fumarate An ADRENERGIC BETA-2 RECEPTOR AGONIST with a prolonged duration of action. It is used to manage ASTHMA and in the treatment of CHRONIC OBSTRUCTIVE PULMONARY DISEASE. 3-Formylamino-4-hydroxy-alpha-(N-1-methyl-2-p-methoxyphenethylaminomethyl)benzyl alcohol.hemifumarate,Arformoterol,BD 40A,Eformoterol,Foradil,Formoterol,Formoterol Fumarate, ((R*,R*)-(+-))-isomer,Formoterol, ((R*,R*)-(+-))-isomer,Oxis
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000318 Adrenergic beta-Agonists Drugs that selectively bind to and activate beta-adrenergic receptors. Adrenergic beta-Receptor Agonists,beta-Adrenergic Agonists,beta-Adrenergic Receptor Agonists,Adrenergic beta-Agonist,Adrenergic beta-Receptor Agonist,Betamimetics,Receptor Agonists, beta-Adrenergic,Receptors Agonists, Adrenergic beta,beta-Adrenergic Agonist,beta-Adrenergic Receptor Agonist,Adrenergic beta Agonist,Adrenergic beta Agonists,Adrenergic beta Receptor Agonist,Adrenergic beta Receptor Agonists,Agonist, Adrenergic beta-Receptor,Agonist, beta-Adrenergic,Agonist, beta-Adrenergic Receptor,Agonists, Adrenergic beta-Receptor,Agonists, beta-Adrenergic,Agonists, beta-Adrenergic Receptor,Receptor Agonist, beta-Adrenergic,Receptor Agonists, beta Adrenergic,beta Adrenergic Agonist,beta Adrenergic Agonists,beta Adrenergic Receptor Agonist,beta Adrenergic Receptor Agonists,beta-Agonist, Adrenergic,beta-Agonists, Adrenergic,beta-Receptor Agonist, Adrenergic,beta-Receptor Agonists, Adrenergic

Related Publications

S Kellenberger, and K Muller, and H Richener, and G Bilbe
January 2004, International journal of gynecological cancer : official journal of the International Gynecological Cancer Society,
S Kellenberger, and K Muller, and H Richener, and G Bilbe
January 1999, Advances in space research : the official journal of the Committee on Space Research (COSPAR),
S Kellenberger, and K Muller, and H Richener, and G Bilbe
June 1978, Canadian journal of physiology and pharmacology,
S Kellenberger, and K Muller, and H Richener, and G Bilbe
April 2005, Bioelectromagnetics,
S Kellenberger, and K Muller, and H Richener, and G Bilbe
January 2004, British journal of haematology,
S Kellenberger, and K Muller, and H Richener, and G Bilbe
November 2004, Uchu Seibutsu Kagaku,
S Kellenberger, and K Muller, and H Richener, and G Bilbe
March 1988, Biochemical and biophysical research communications,
S Kellenberger, and K Muller, and H Richener, and G Bilbe
April 2001, American journal of physiology. Lung cellular and molecular physiology,
S Kellenberger, and K Muller, and H Richener, and G Bilbe
August 1996, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
S Kellenberger, and K Muller, and H Richener, and G Bilbe
October 1992, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
Copied contents to your clipboard!