Inhibition of recombinant human mitochondrial aldehyde dehydrogenase by two intermediate metabolites of disulfiram. 1998

D C Mays, and P Ortiz-Bermudez, and J P Lam, and I H Tong, and A H Fauq, and J J Lipsky
Department of Pharmacology, Mayo Medical School, Mayo Clinic/Foundation, Rochester, MN 55905, USA. mays.dennis@mayo.edu

Disulfiram is used in aversion therapy for alcoholism. S-Methyl-N,N-diethylthiocarbamate (MeDTC) sulfoxide, a potent inhibitor of the target enzyme mitochondrial aldehyde dehydrogenase (ALDH2), is thought to be the principal active metabolite of disulfiram in vivo. We examined the effects on recombinant human ALDH2 of two intermediate metabolites of disulfiram, S-methyl-N,N-diethyldithiocarbamate (MeDDC) sulfoxide and MeDDC sulfine. MeDDC sulfoxide was a potent inhibitor of ALDH2 with an IC50 of 2.2 +/- 0.5 microM (mean +/- SD, N = 4) after preincubation with enzyme for 30 min. MeDDC sulfine was a relatively weak inhibitor of ALDH2 under the same conditions with an IC50 value of 62 +/- 14 microM. The inhibition of ALDH2 by both compounds was irreversible and did not require the cofactor NAD. The latter finding demonstrates that inactivation of ALDH2 is independent of the dehydrogenase activity of the enzyme. GSH blocked almost completely the inhibition by 20 microM of MeDDC sulfoxide and greatly diminished the inhibition by 200 microM of MeDDC sulfine. Inactivation by MeDDC sulfoxide was time dependent. MeDTC sulfoxide was a more potent inhibitor of recombinant human ALDH2 (IC50 = 1.4 +/- 0.3 microM after preincubation for 15 min) than either of the intermediate metabolites, and its inhibition was unaffected by GSH. Our results suggest that these newer intermediate metabolites of disulfiram, especially the more potent MeDTC sulfoxide, have the potential to inhibit the target enzyme ALDH2 in patients receiving disulfiram. However, until the significance of the interactions of the inhibitors with GSH is more fully understood, the contribution of MeDDC sulfine and MeDDC sulfoxide to the pharmacological effects of disulfiram in vivo is uncertain.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004050 Ditiocarb A chelating agent that has been used to mobilize toxic metals from the tissues of humans and experimental animals. It is the main metabolite of DISULFIRAM. Diethyldithiocarbamate,Diethylcarbamodithioic Acid,Diethyldithiocarbamic Acid,Dithiocarb,Ditiocarb Sodium,Ditiocarb, Ammonium Salt,Ditiocarb, Bismuth Salt,Ditiocarb, Lead Salt,Ditiocarb, Potassium Salt,Ditiocarb, Sodium Salt,Ditiocarb, Sodium Salt, Trihydrate,Ditiocarb, Tin(4+) Salt,Ditiocarb, Zinc Salt,Imuthiol,Sodium Diethyldithiocarbamate,Thiocarb,Zinc Diethyldithiocarbamate,Ammonium Salt Ditiocarb,Bismuth Salt Ditiocarb,Diethyldithiocarbamate, Sodium,Diethyldithiocarbamate, Zinc,Lead Salt Ditiocarb,Potassium Salt Ditiocarb,Sodium Salt Ditiocarb,Sodium, Ditiocarb,Zinc Salt Ditiocarb
D004221 Disulfiram A carbamate derivative used as an alcohol deterrent. It is a relatively nontoxic substance when administered alone, but markedly alters the intermediary metabolism of alcohol. When alcohol is ingested after administration of disulfiram, blood acetaldehyde concentrations are increased, followed by flushing, systemic vasodilation, respiratory difficulties, nausea, hypotension, and other symptoms (acetaldehyde syndrome). It acts by inhibiting aldehyde dehydrogenase. Tetraethylthiuram Disulfide,Alcophobin,Antabus,Antabuse,Anticol,Bis(diethylthiocarbamoyl) Disulfide,Dicupral,Esperal,Tetraethylthioperoxydicarbonic Diamide, ((H2N)C(S))2S2,Teturam,Disulfide, Tetraethylthiuram
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000427 Alcohol Deterrents Substances interfering with the metabolism of ethyl alcohol, causing unpleasant side effects thought to discourage the drinking of alcoholic beverages. Alcohol deterrents are used in the treatment of alcoholism. Deterrents, Alcohol
D000444 Aldehyde Dehydrogenase An enzyme that oxidizes an aldehyde in the presence of NAD+ and water to an acid and NADH. This enzyme was formerly classified as EC 1.1.1.70. D-Glucuronolactone Dehydrogenase,Aldehyde Dehydrogenase (NAD(+)),Aldehyde Dehydrogenase E1,Aldehyde Dehydrogenase E2,Aldehyde-NAD Oxidoreductase,Aldehyde NAD Oxidoreductase,D Glucuronolactone Dehydrogenase,Dehydrogenase, Aldehyde,Dehydrogenase, D-Glucuronolactone

Related Publications

D C Mays, and P Ortiz-Bermudez, and J P Lam, and I H Tong, and A H Fauq, and J J Lipsky
November 1997, Biochemistry,
D C Mays, and P Ortiz-Bermudez, and J P Lam, and I H Tong, and A H Fauq, and J J Lipsky
January 2001, Chemico-biological interactions,
D C Mays, and P Ortiz-Bermudez, and J P Lam, and I H Tong, and A H Fauq, and J J Lipsky
May 1982, Science (New York, N.Y.),
D C Mays, and P Ortiz-Bermudez, and J P Lam, and I H Tong, and A H Fauq, and J J Lipsky
January 1985, FEBS letters,
D C Mays, and P Ortiz-Bermudez, and J P Lam, and I H Tong, and A H Fauq, and J J Lipsky
January 1999, Advances in experimental medicine and biology,
D C Mays, and P Ortiz-Bermudez, and J P Lam, and I H Tong, and A H Fauq, and J J Lipsky
January 2001, Chemico-biological interactions,
D C Mays, and P Ortiz-Bermudez, and J P Lam, and I H Tong, and A H Fauq, and J J Lipsky
April 1983, Clinical pharmacology and therapeutics,
D C Mays, and P Ortiz-Bermudez, and J P Lam, and I H Tong, and A H Fauq, and J J Lipsky
November 1984, Biochimica et biophysica acta,
D C Mays, and P Ortiz-Bermudez, and J P Lam, and I H Tong, and A H Fauq, and J J Lipsky
January 1997, Advances in experimental medicine and biology,
D C Mays, and P Ortiz-Bermudez, and J P Lam, and I H Tong, and A H Fauq, and J J Lipsky
November 1982, Toxicology letters,
Copied contents to your clipboard!