Differential effects of phosphonic analogues of GABA on GABA(B) autoreceptors in rat neocortical slices. 1998

J Ong, and V Marino, and D A Parker, and D I Kerr
Department of Anaesthesia and Intensive Care, The University of Adelaide, South Australia.

The effects of five phosphonic derivatives of GABA on the release of [3H]-GABA from rat neocortical slices, preloaded with [3H]-GABA, were investigated. Phaclofen and 4-aminobutylphosphonic acid (4-ABPA) increased the overflow of [3H] evoked by electrical stimulation (2 Hz) in a concentration-dependent manner, with similar potencies (phaclofen EC50=0.3 mmol/l, 4-ABPA EC50=0.4 mmol/l). At 3 mmol/l, phaclofen increased the release of [3H]-GABA by 82.6+/-8.6%, and 4-ABPA increased the release by 81.3+/-9.0%. 2-Amino-ethylphosphonic acid (2-AEPA) increased the overflow of [3H] by 46.8+/-10.9% at the highest concentration tested (3 mmol/l). In contrast, the lower phosphonic homologue 3-aminopropylphosphonic acid (3-APPA), and 2-amino-2-(p-chlorophenyl)-ethylphosphonic acid (2-CPEPA), a baclofen analogue, did not modify the stimulated overflow. These results suggest that phaclofen, 4-ABPA and 2-AEPA are antagonists at GABA(B) autoreceptors, the latter being the weakest antagonist, whilst neither 3-APPA nor 2-CPEPA are active at these receptors. Since phaclofen, 4-ABPA and 2-CPEPA are antagonists and 3-APPA a partial agonist/antagonist on GABA(B) heteroreceptors, the lack of effect of 3-APPA and 2-CPEPA on [3H]-GABA release in this study suggests that GABA(B) autoreceptors may be pharmacologically distinct from the heteroreceptors.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D011437 Propylamines Derivatives of propylamine (the structural formula NH2CH2CH2CH3).
D002082 Butylamines Isomeric amines of butane, where an amino group replaces a hydrogen on one of the four carbons. They include isobutylamine, n-Butylamine, sec-Butylamine, and tert-Butylamine.
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018080 Receptors, GABA-B A subset of GABA RECEPTORS that signal through their interaction with HETEROTRIMERIC G-PROTEINS. Baclofen Receptors,GABA-B Receptors,Baclofen Receptor,GABA receptor rho1,GABA type B receptor, subunit 1,GABA(B)R1,GABA(B)R1 receptor,GABA(B)R1a protein,GABA(B)R1a receptor,GABA(B)R1b protein,GABA(B)R1b receptor,GABA-B Receptor,GABBR1 protein,GB1a protein,GB1b protein,GBR1B protein,Receptors, Baclofen,rho1 subunit, GABA receptor

Related Publications

J Ong, and V Marino, and D A Parker, and D I Kerr
June 2000, Canadian journal of physiology and pharmacology,
J Ong, and V Marino, and D A Parker, and D I Kerr
June 1997, European journal of pharmacology,
J Ong, and V Marino, and D A Parker, and D I Kerr
January 2011, European journal of pharmacology,
J Ong, and V Marino, and D A Parker, and D I Kerr
January 1990, Neuroscience,
J Ong, and V Marino, and D A Parker, and D I Kerr
November 1999, Neuropharmacology,
J Ong, and V Marino, and D A Parker, and D I Kerr
January 2000, Amino acids,
J Ong, and V Marino, and D A Parker, and D I Kerr
May 1997, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
J Ong, and V Marino, and D A Parker, and D I Kerr
February 1973, Journal of neurochemistry,
J Ong, and V Marino, and D A Parker, and D I Kerr
August 1972, Journal of neurochemistry,
Copied contents to your clipboard!