Noise-induced threshold shift dynamics measured with distortion-product otoacoustic emissions and auditory evoked potentials in chinchillas with inner hair cell deficient cochleas. 1998

R P Hamernik, and W A Ahroon, and B M Jock, and J A Bennett
Auditory Research Laboratory, State University of New York at Plattsburgh, 12901, USA. AhroonWA@SPLAVA.CC.PLATTSBURGH.EDU

Chinchillas (n = 6) were treated with carboplatin and, following a 30-day recovery period, were exposed to a 115 dB peak SPL impact noise presented at a rate of l/s for 6 h/day for 10 days. A second group (n = 6) received only the noise treatment. Cubic distortion product otoacoustic emissions (2f1-f2) and auditory evoked potential (AEP) detection thresholds in response to tone bursts were measured before and 30 days after drug treatment and following the first and 10th day of the noise exposure. Thirty days after the final exposure day, permanent changes in AEP detection thresholds and emissions were measured and cochleograms constructed. The drug treatment eliminated over 80% of the inner hair cells (IHC) in the cochlea, leaving the outer hair cell (OHC) population essentially intact prior to the interrupted noise exposure. The drug treatment alone had very little or no effect on AEP detection thresholds and emission metrics. Following the noise exposure, the IHC-deficient animals showed clear 'toughening' effects in the AEP and emission measures which were the same as measured in the group receiving only the noise. After a 30-day post-exposure recovery period. AEP thresholds were elevated about 10 dB at the low frequencies in the drug-noise group whereas emissions returned to near normal despite the massive IHC losses. These results are consistent with the idea that an intact OHC population is required for toughening. However, sound-evoked efferent pathways activated by the few remaining IHCs (approximately 20%) which, in this preparation, are distributed throughout the cochlea, may still contribute significantly to the toughening phenomena.

UI MeSH Term Description Entries
D009622 Noise Any sound which is unwanted or interferes with HEARING other sounds. Noise Pollution,Noises,Pollution, Noise
D002682 Chinchilla A genus of the family Chinchillidae which consists of three species: C. brevicaudata, C. lanigera, and C. villidera. They are used extensively in biomedical research. Chinchillas
D003051 Cochlea The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH. Cochleas
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D001299 Audiometry The testing of the acuity of the sense of hearing to determine the thresholds of the lowest intensity levels at which an individual can hear a set of tones. The frequencies between 125 and 8000 Hz are used to test air conduction thresholds and the frequencies between 250 and 4000 Hz are used to test bone conduction thresholds. Audiometries
D001309 Auditory Threshold The audibility limit of discriminating sound intensity and pitch. Auditory Thresholds,Threshold, Auditory,Thresholds, Auditory
D016057 Evoked Potentials, Auditory, Brain Stem Electrical waves in the CEREBRAL CORTEX generated by BRAIN STEM structures in response to auditory click stimuli. These are found to be abnormal in many patients with CEREBELLOPONTINE ANGLE lesions, MULTIPLE SCLEROSIS, or other DEMYELINATING DISEASES. Acoustic Evoked Brain Stem Potentials,Auditory Brain Stem Evoked Responses,Brain Stem Auditory Evoked Potentials,Evoked Responses, Auditory, Brain Stem,Acoustic Evoked Brain Stem Potential,Acoustic Evoked Brainstem Potential,Acoustic Evoked Brainstem Potentials,Auditory Brain Stem Evoked Response,Auditory Brain Stem Response,Auditory Brain Stem Responses,Auditory Brainstem Evoked Response,Auditory Brainstem Evoked Responses,Auditory Brainstem Responses,Brain Stem Auditory Evoked Potential,Brainstem Auditory Evoked Potential,Brainstem Auditory Evoked Potentials,Evoked Potential, Auditory, Brainstem,Evoked Potentials, Auditory, Brainstem,Evoked Response, Auditory, Brain Stem,Evoked Response, Auditory, Brainstem,Evoked Responses, Auditory, Brainstem,Auditory Brainstem Response,Brainstem Response, Auditory,Brainstem Responses, Auditory,Response, Auditory Brainstem,Responses, Auditory Brainstem
D016190 Carboplatin An organoplatinum compound that possesses antineoplastic activity. cis-Diammine(cyclobutanedicarboxylato)platinum II,Blastocarb,CBDCA,Carboplat,Carbosin,Carbotec,Ercar,JM-8,NSC-241240,Nealorin,Neocarbo,Paraplatin,Paraplatine,Platinwas,Ribocarbo,JM 8,JM8,NSC 241240,NSC241240
D017084 Otoacoustic Emissions, Spontaneous Self-generated faint acoustic signals from the inner ear (COCHLEA) without external stimulation. These faint signals can be recorded in the EAR CANAL and are indications of active OUTER AUDITORY HAIR CELLS. Spontaneous otoacoustic emissions are found in all classes of land vertebrates. Spontaneous Otoacoustic Emissions,Otoacoustic Emission, Spontaneous,Spontaneous Otoacoustic Emission

Related Publications

R P Hamernik, and W A Ahroon, and B M Jock, and J A Bennett
September 1998, Auris, nasus, larynx,
R P Hamernik, and W A Ahroon, and B M Jock, and J A Bennett
February 2005, Journal of the American Academy of Audiology,
R P Hamernik, and W A Ahroon, and B M Jock, and J A Bennett
February 2003, Hearing research,
R P Hamernik, and W A Ahroon, and B M Jock, and J A Bennett
December 2003, Journal of the Association for Research in Otolaryngology : JARO,
R P Hamernik, and W A Ahroon, and B M Jock, and J A Bennett
July 1996, Hearing research,
R P Hamernik, and W A Ahroon, and B M Jock, and J A Bennett
December 1998, Journal of speech, language, and hearing research : JSLHR,
R P Hamernik, and W A Ahroon, and B M Jock, and J A Bennett
December 1997, HNO,
R P Hamernik, and W A Ahroon, and B M Jock, and J A Bennett
February 1998, British journal of audiology,
R P Hamernik, and W A Ahroon, and B M Jock, and J A Bennett
October 1998, The Journal of the Acoustical Society of America,
Copied contents to your clipboard!