Comparison of distortion-product and transient evoked otoacoustic emissions with ABR threshold shift in chinchillas with ototoxic damage. 1998

A Kakigi, and H Hirakawa, and N Harel, and R J Mount, and R V Harrison
Department of Otolaryngology, Hospital for Sick Children, University of Toronto, Canada.

In this study we compare distortion product otoacoustic emissions (DPOAEs), transient evoked otoacoustic emissions (TEOAEs) and ABR threshold shifts in an animal model (chinchilla) of cochlear hearing loss. Subjects were treated with an aminoglycoside (amikacin) to produce basal cochlear lesions of various degree. DPOAE and TEOAE were measured throughout the treatment period and until hearing thresholds stabilized. ABR thresholds to tone pip stimuli were determined. Cytocochleograms of cochleas were prepared using scanning microscopy. DPOAEs (2f1-f2) were compared to fast Fourier transform (FFT)-analyzed TEOAEs components in the 1-, 2-, and 4-kHz frequency regions. Both types of emission were compared with corresponding ABR thresholds. There was no significant linear correlation between these different measures of cochlear function. Moreover, the amplitudes of DPOAEs reflected smaller regions of cochlear outer hair cell (OHC) damage better than TEOAEs. These results suggest that DPOAEs can be used to more accurately monitor hair cell function at specific hearing locations than TEOAEs.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002682 Chinchilla A genus of the family Chinchillidae which consists of three species: C. brevicaudata, C. lanigera, and C. villidera. They are used extensively in biomedical research. Chinchillas
D005583 Fourier Analysis Analysis based on the mathematical function first formulated by Jean-Baptiste-Joseph Fourier in 1807. The function, known as the Fourier transform, describes the sinusoidal pattern of any fluctuating pattern in the physical world in terms of its amplitude and its phase. It has broad applications in biomedicine, e.g., analysis of the x-ray crystallography data pivotal in identifying the double helical nature of DNA and in analysis of other molecules, including viruses, and the modified back-projection algorithm universally used in computerized tomography imaging, etc. (From Segen, The Dictionary of Modern Medicine, 1992) Fourier Series,Fourier Transform,Analysis, Cyclic,Analysis, Fourier,Cyclic Analysis,Analyses, Cyclic,Cyclic Analyses,Series, Fourier,Transform, Fourier
D006319 Hearing Loss, Sensorineural Hearing loss resulting from damage to the COCHLEA and the sensorineural elements which lie internally beyond the oval and round windows. These elements include the AUDITORY NERVE and its connections in the BRAINSTEM. Deafness Neurosensory,Deafness, Neurosensory,Deafness, Sensoryneural,Neurosensory Deafness,Sensorineural Hearing Loss,Sensoryneural Deafness,Cochlear Hearing Loss,Hearing Loss, Cochlear,Deafnesses, Neurosensory,Deafnesses, Sensoryneural,Neurosensory Deafnesses,Sensoryneural Deafness,Sensoryneural Deafnesses
D000583 Amikacin A broad-spectrum antibiotic derived from KANAMYCIN. It is reno- and oto-toxic like the other aminoglycoside antibiotics. A.M.K,Amikacin Sulfate,Amikacina Medical,Amikacina Normon,Amikafur,Amikalem,Amikason's,Amikayect,Amikin,Amiklin,Amukin,BB-K 8,BB-K8,Biclin,Biklin,Gamikal,Kanbine,Oprad,Yectamid,BB K 8,BB K8,BBK 8,BBK8,Medical, Amikacina,Normon, Amikacina,Sulfate, Amikacin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001300 Audiometry, Evoked Response A form of electrophysiologic audiometry in which an analog computer is included in the circuit to average out ongoing or spontaneous brain wave activity. A characteristic pattern of response to a sound stimulus may then become evident. Evoked response audiometry is known also as electric response audiometry. Audiometry, Electroencephalic Response,Electrocochleography,Evoked Response Audiometry,Audiometries, Electroencephalic Response,Audiometries, Evoked Response,Electrocochleographies,Electroencephalic Response Audiometries,Electroencephalic Response Audiometry,Evoked Response Audiometries,Response Audiometries, Electroencephalic,Response Audiometries, Evoked,Response Audiometry, Electroencephalic,Response Audiometry, Evoked
D001309 Auditory Threshold The audibility limit of discriminating sound intensity and pitch. Auditory Thresholds,Threshold, Auditory,Thresholds, Auditory

Related Publications

A Kakigi, and H Hirakawa, and N Harel, and R J Mount, and R V Harrison
May 1995, Journal of the American Academy of Audiology,
A Kakigi, and H Hirakawa, and N Harel, and R J Mount, and R V Harrison
January 2009, The Journal of the Acoustical Society of America,
A Kakigi, and H Hirakawa, and N Harel, and R J Mount, and R V Harrison
April 2003, Lin chuang er bi yan hou ke za zhi = Journal of clinical otorhinolaryngology,
A Kakigi, and H Hirakawa, and N Harel, and R J Mount, and R V Harrison
August 1998, Journal of the American Academy of Audiology,
A Kakigi, and H Hirakawa, and N Harel, and R J Mount, and R V Harrison
February 2005, Journal of the American Academy of Audiology,
A Kakigi, and H Hirakawa, and N Harel, and R J Mount, and R V Harrison
February 2001, European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery,
A Kakigi, and H Hirakawa, and N Harel, and R J Mount, and R V Harrison
July 2015, International archives of otorhinolaryngology,
A Kakigi, and H Hirakawa, and N Harel, and R J Mount, and R V Harrison
January 2007, Revue de laryngologie - otologie - rhinologie,
A Kakigi, and H Hirakawa, and N Harel, and R J Mount, and R V Harrison
November 2007, International journal of pediatric otorhinolaryngology,
Copied contents to your clipboard!