Delta-protein kinase C phosphorylation parallels inhibition of nerve growth factor-induced differentiation independent of changes in Trk A and MAP kinase signalling in PC12 cells. 1998

M W Wooten, and M L Seibenhener, and J E Heikkila, and H Mischak
Department of Zoology, Auburn University, AL 36849. mwwooten@acesag.auburn.edu

We investigated the ability of bryostatin 1 to block nerve growth factor (NGF)-induced differentiation of pheochromocytoma PC12 cells and to effect expression of protein kinase C (PKC) isoforms. Compared with phorbol myristate acetate (PMA), a likewise potent activator of PKC, high doses of bryostatin (> 200 nM) failed to down-regulate delta-PKC, as with zeta-PKC, whereas, alpha-PKC was completely down-regulated. Two forms of delta-PKC were expressed in PC12 cells, a phosphorylated 78.000 M(r) species and a de-phosphorylated 76.000 M(r) form. High-dose bryostatin treatment resulted in a 4.5-fold increase in phosphorylated delta-PKC and a 2.5-fold increase in phosphotyrosine. Inhibition of tyrosine kinase activity, with either herbimycin or genistein, prior to addition of bryostatin abrogated protection from down-regulation and led to simultaneous increases in ubiquitinated 110.000 M(r)-delta-PKC. Similarly, pre-treatment of cells with N-acetyl-L-leucinyl-L-leucinyl-L-norleucinal, an inhibitor of the proteasome pathway, prior to low-dose treatment with bryostatin resulted in a dose-dependent accumulation of delta-PKC and inhibition of down-regulation. Protection of delta-PKC from down-regulation by high-dose bryostatin requires a counter-balance between protein tyrosine kinase and phosphatase systems. High doses of bryostatin blocked NGF-induced neurite outgrowth without altering Y-490 TrK A phosphorylation or an alteration in pp44/42 mitogen-activated protein kinase. Our findings suggest that the phosphorylation state of delta-PKC may regulate its ability to participate in signal coupling and modulation of cell growth and differentiation pathways. Moreover, these data reveal the existence of a signalling pathway independent of MAP kinase that affects NGF differentiation in a negative fashion.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007783 Lactones Cyclic esters of hydroxy carboxylic acids, containing a 1-oxacycloalkan-2-one structure. Large cyclic lactones of over a dozen atoms are MACROLIDES. Lactone
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine
D014475 Uncoupling Agents Chemical agents that uncouple oxidation from phosphorylation in the metabolic cycle so that ATP synthesis does not occur. Included here are those IONOPHORES that disrupt electron transfer by short-circuiting the proton gradient across mitochondrial membranes. Agents, Uncoupling

Related Publications

M W Wooten, and M L Seibenhener, and J E Heikkila, and H Mischak
April 1995, Molecular biology of the cell,
M W Wooten, and M L Seibenhener, and J E Heikkila, and H Mischak
January 1994, Journal of molecular neuroscience : MN,
M W Wooten, and M L Seibenhener, and J E Heikkila, and H Mischak
April 1986, Proceedings of the National Academy of Sciences of the United States of America,
M W Wooten, and M L Seibenhener, and J E Heikkila, and H Mischak
May 1990, FEBS letters,
M W Wooten, and M L Seibenhener, and J E Heikkila, and H Mischak
February 1993, Journal of neurochemistry,
M W Wooten, and M L Seibenhener, and J E Heikkila, and H Mischak
June 1995, The Journal of biological chemistry,
M W Wooten, and M L Seibenhener, and J E Heikkila, and H Mischak
March 2007, The Journal of biological chemistry,
M W Wooten, and M L Seibenhener, and J E Heikkila, and H Mischak
July 1992, Molecular pharmacology,
Copied contents to your clipboard!