Comparison of 5-fluoro-2'-deoxyuridine with 5-fluorouracil and their role in the treatment of colorectal cancer. 1998

J A van Laar, and Y M Rustum, and S P Ackland, and C J van Groeningen, and G J Peters
Department of Medical Oncology, University Hospital VU, Amsterdam, The Netherlands.

Despite more than 30 years of intensive studies on new drugs against advanced colorectal cancer, the fluoropyrimidines remain the drugs of choice for systemic treatment and for hepatic artery infusion (HAI). This overview describes new developments in advanced colorectal cancer chemotherapy, providing a rationale for more effective use of the fluoropyrimidines, with biochemical modulation, scheduling or by revealing biochemical mechanisms of action that correlate with antitumour activity. In human colorectal cancer cell lines and various animal tumour model systems 5-fluoro-2'-deoxyuridine (FdUrd) is more effective than 5-fluorouracil (5-FU). Comparably, FdUrd's modulation by leucovorin (LV) is more potent than 5-FU. In animal studies it is shown that intermittent high-bolus administration of FdUrd generates better antitumour activity, compared with equal toxic doses or any other schedule of 5-FU. These effects are related to prolonged-thymidylate synthase (TS) inhibition and the prevention of TS induction, rather than RNA incorporation. Preclinical studies with modulators such as N-phosphonacetyl-L-aspartate (PALA), WR-2721, mitomycin C and platinum derivatives provide a rationale for clinical use in the future. The first choice systemic chemotherapy of patients with advanced colorectal cancer remains 5-FU combined with LV. Some improvement in therapeutic efficacy has been achieved with locoregional HAI. In randomised studies HAI FdUrd improves the quality of life and survival as compared with optimal systemic therapy. Chronomodulation decreases toxicity, allowing dose intensification, while modulators such as LV or dexamethasone increase survival of patients treated with HAI FdUrd to 86% after 1 year. In conclusion, the clinical use of FdUrd has not been fully explored. Intermittent high-dose FdUrd, chronomodulation together with the use of modulators or drugs focused on prolonged TS inhibition, should be studied in large randomised studies.

UI MeSH Term Description Entries
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002986 Clinical Trials as Topic Works about pre-planned studies of the safety, efficacy, or optimum dosage schedule (if appropriate) of one or more diagnostic, therapeutic, or prophylactic drugs, devices, or techniques selected according to predetermined criteria of eligibility and observed for predefined evidence of favorable and unfavorable effects. This concept includes clinical trials conducted both in the U.S. and in other countries. Clinical Trial as Topic
D005467 Floxuridine An antineoplastic antimetabolite that is metabolized to fluorouracil when administered by rapid injection; when administered by slow, continuous, intra-arterial infusion, it is converted to floxuridine monophosphate. It has been used to treat hepatic metastases of gastrointestinal adenocarcinomas and for palliation in malignant neoplasms of the liver and gastrointestinal tract. FUdR,Fluorodeoxyuridine,5-FUdR,5-Fluorodeoxyuridine,5 Fluorodeoxyuridine
D005472 Fluorouracil A pyrimidine analog that is an antineoplastic antimetabolite. It interferes with DNA synthesis by blocking the THYMIDYLATE SYNTHETASE conversion of deoxyuridylic acid to thymidylic acid. 5-FU,5-FU Lederle,5-FU Medac,5-Fluorouracil,5-Fluorouracil-Biosyn,5-HU Hexal,5FU,Adrucil,Carac,Efudex,Efudix,Fluoro-Uracile ICN,Fluoroplex,Fluorouracil Mononitrate,Fluorouracil Monopotassium Salt,Fluorouracil Monosodium Salt,Fluorouracil Potassium Salt,Fluorouracil-GRY,Fluorouracile Dakota,Fluorouracilo Ferrer Far,Fluoruracil,Fluracedyl,Flurodex,Haemato-FU,Neofluor,Onkofluor,Ribofluor,5 FU Lederle,5 FU Medac,5 Fluorouracil,5 Fluorouracil Biosyn,5 HU Hexal,Dakota, Fluorouracile,Fluoro Uracile ICN,Fluorouracil GRY,Haemato FU
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000964 Antimetabolites, Antineoplastic Antimetabolites that are useful in cancer chemotherapy. Antineoplastic Antimetabolites
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015179 Colorectal Neoplasms Tumors or cancer of the COLON or the RECTUM or both. Risk factors for colorectal cancer include chronic ULCERATIVE COLITIS; FAMILIAL POLYPOSIS COLI; exposure to ASBESTOS; and irradiation of the CERVIX UTERI. Colorectal Cancer,Colorectal Carcinoma,Colorectal Tumors,Neoplasms, Colorectal,Cancer, Colorectal,Cancers, Colorectal,Carcinoma, Colorectal,Carcinomas, Colorectal,Colorectal Cancers,Colorectal Carcinomas,Colorectal Neoplasm,Colorectal Tumor,Neoplasm, Colorectal,Tumor, Colorectal,Tumors, Colorectal

Related Publications

J A van Laar, and Y M Rustum, and S P Ackland, and C J van Groeningen, and G J Peters
January 1990, Anticancer research,
J A van Laar, and Y M Rustum, and S P Ackland, and C J van Groeningen, and G J Peters
October 1963, Cancer chemotherapy reports,
J A van Laar, and Y M Rustum, and S P Ackland, and C J van Groeningen, and G J Peters
February 1962, Cancer chemotherapy reports,
J A van Laar, and Y M Rustum, and S P Ackland, and C J van Groeningen, and G J Peters
January 1964, Clinical pharmacology and therapeutics,
J A van Laar, and Y M Rustum, and S P Ackland, and C J van Groeningen, and G J Peters
August 2002, Journal of chemotherapy (Florence, Italy),
J A van Laar, and Y M Rustum, and S P Ackland, and C J van Groeningen, and G J Peters
April 1963, Cancer chemotherapy reports,
J A van Laar, and Y M Rustum, and S P Ackland, and C J van Groeningen, and G J Peters
February 1990, Journal of chemotherapy (Florence, Italy),
J A van Laar, and Y M Rustum, and S P Ackland, and C J van Groeningen, and G J Peters
January 1991, Journal of nuclear biology and medicine (Turin, Italy : 1991),
J A van Laar, and Y M Rustum, and S P Ackland, and C J van Groeningen, and G J Peters
September 1974, Journal of medicinal chemistry,
J A van Laar, and Y M Rustum, and S P Ackland, and C J van Groeningen, and G J Peters
December 1973, Journal of pharmaceutical sciences,
Copied contents to your clipboard!