In vivo oxidized low density lipoprotein: degree of lipoprotein oxidation does not correlate with its atherogenic properties. 1998

V V Tertov, and V V Kaplun, and A N Orekhov
Institute of Experimental Cardiology, Cardiology Research Center, Moscow, Russia.

We have recently demonstrated that lipids, particularly cholesterol, covalently bound to apolipoprotein B (apoB) are a stable marker of low density lipoprotein (LDL) oxidation (Tertov et al. 1995). The present study is an attempt to assess the relationship between the degree of LDL oxidation, evaluated by the content of apoB-bound cholesterol and the ability of LDL to induce cholesterol accumulation in cultured human aortic intimal smooth muscle cells, i.e. LDL atherogenicity. Native LDL was oxidized in vitro by copper ions, 2,2-azobis-(2-aminopropane hydrochloride), or sodium hypochlorite. Minimum degree of LDL in vitro oxidation necessary to convert LDL into atherogenic one was accompanied by an increase of apoB-bound cholesterol to the level much higher than that usually observed in freshly isolated atherogenic LDL from human blood. Moreover, elimination of LDL aggregates from in vitro oxidized LDL preparations by gel filtration led to loss of its atherogenic properties. Thus, the ability to induce cholesterol accumulation in cells, i.e. the atherogenicity of in vitro oxidized LDL is a result of LDL aggregation but not oxidation. We also studied the relationship between LDL atherogenicity and apoB-bound cholesterol content in LDL freshly isolated from healthy subjects and normo- and hypercholesterolemic patients with coronary atherosclerosis. The ability of human LDL to induce cholesterol accumulation in aortic smooth muscle cells did not correlate with the degree of in vivo LDL oxidation (r = 0.12, n = 90). It is concluded that LDL atherogenicity does not depend on the degree of lipid peroxidation in LDL particle.

UI MeSH Term Description Entries
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D001011 Aorta The main trunk of the systemic arteries. Aortas

Related Publications

V V Tertov, and V V Kaplun, and A N Orekhov
October 1998, Clinical science (London, England : 1979),
V V Tertov, and V V Kaplun, and A N Orekhov
October 2020, The Journal of international medical research,
V V Tertov, and V V Kaplun, and A N Orekhov
January 1995, Atherosclerosis,
V V Tertov, and V V Kaplun, and A N Orekhov
June 2000, Clinical chemistry and laboratory medicine,
V V Tertov, and V V Kaplun, and A N Orekhov
August 1998, Current opinion in lipidology,
V V Tertov, and V V Kaplun, and A N Orekhov
January 2010, Methods in molecular biology (Clifton, N.J.),
V V Tertov, and V V Kaplun, and A N Orekhov
February 1989, The Journal of biological chemistry,
V V Tertov, and V V Kaplun, and A N Orekhov
August 2004, Metabolism: clinical and experimental,
V V Tertov, and V V Kaplun, and A N Orekhov
January 2000, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!