Na+-activated K+ channels in small dorsal root ganglion neurones of rat. 1998

U Bischoff, and W Vogel, and B V Safronov
Physiologisches Institut, Justus-Liebig-Universitat Giessen, Aulweg 129, 35392 Giessen, Germany.

1. Whole-cell Na+-activated K+ (KNa) channel currents and single KNa channels were studied with the patch-clamp method in small (20-25 micrometer) dorsal root ganglion (DRG) neurones in slices of rat dorsal root ganglia. 2. The whole-cell KNa channel current was identified as an additional K+-selective leakage current which appeared after cell perfusion with internal solutions containing different [Na+]. The concentration for half-maximal activation of KNa channel current was 39 mM and the Hill coefficient was 3.5. At [Na+]i above 12 mM, KNa channel current dominated the unspecific leakage current. The ratio of maximum KNa channel current to unspecific leakage current was 45. 3. KNa channel current was not activated by internal Li+. It was suppressed by external 20 mM Cs+ but not by 10 mM tetraethylammonium. 4. Single KNa channels with a conductance of 142 pS in 155 mM external K+ (K+o)-85 mM internal K+ (K+i) solutions were observed at a high density of about 2 channels micrometer-2. 5. In two-electrode experiments, a direct correlation was seen between development of whole- cell KNa channel current and activation of single KNa channels during perfusion of the neurone with Na+-containing internal solution. 6. Under current-clamp conditions, KNa channels did not contribute to the action potential. However, internal perfusion of the neurone with Na+ shifted the resting potential towards the equilibrium potential for K+ (EK). Varying external [K+] indicated that in neurones perfused with Na+-containing internal solution the resting potential followed the EK values predicted by the Nernst equation over a broader voltage range than in neurones perfused with Na+-free solution. 7. It is concluded that the function of KNa channels has no links to firing behaviour but that the channels could be involved in setting or stabilizing the resting potential in small DRG neurones.

UI MeSH Term Description Entries
D008094 Lithium An element in the alkali metals family. It has the atomic symbol Li, atomic number 3, and atomic weight [6.938; 6.997]. Salts of lithium are used in treating BIPOLAR DISORDER. Lithium-7,Lithium 7
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel

Related Publications

U Bischoff, and W Vogel, and B V Safronov
June 2016, Journal of neuroendocrinology,
U Bischoff, and W Vogel, and B V Safronov
May 2002, Neuroscience letters,
U Bischoff, and W Vogel, and B V Safronov
April 1989, The Journal of physiology,
U Bischoff, and W Vogel, and B V Safronov
August 2007, Journal of cellular physiology,
U Bischoff, and W Vogel, and B V Safronov
August 1997, British journal of pharmacology,
U Bischoff, and W Vogel, and B V Safronov
August 1997, The Journal of physiology,
U Bischoff, and W Vogel, and B V Safronov
August 2000, European journal of pharmacology,
U Bischoff, and W Vogel, and B V Safronov
July 1996, The Journal of physiology,
U Bischoff, and W Vogel, and B V Safronov
November 2000, Anesthesia and analgesia,
Copied contents to your clipboard!