Structure and processivity of two forms of Saccharomyces cerevisiae DNA polymerase delta. 1998

P M Burgers, and K J Gerik
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA. burgers@biochem.wustl.edu

Yeast DNA polymerase delta (Poldelta) consists of three subunits encoded by the POL3, POL31, and POL32 genes. Each of these genes was cloned under control of the galactose-inducible GAL1-10 promoter and overexpressed in various combinations. Overexpression of all three genes resulted in a 30-fold overproduction of Poldelta, which was identical in enzymatic properties to Poldelta isolated from a wild-type yeast strain. Whereas overproduction of POL3 together with POL32 did not lead to an identifiable Pol3p.Pol32p complex, a chromatographically distinct and novel complex was identified upon overproduction of POL3 and POL31. This two-subunit complex, designated Poldelta*, is structurally and functionally analogous to mammalian Poldelta. The properties of Poldelta* and Poldelta were compared. A gel filtration analysis showed that Poldelta* is a heterodimer (Pol3p.Pol31p) and Poldelta a dimer of a heterotrimer, (Pol3p.Pol31p.Pol32p)2. In the absence of proliferating cell nuclear antigen (PCNA), Poldelta* showed a processivity of 2-3 on poly(dA). oligo(dT) compared with 5-10 for Poldelta. In the presence of PCNA, both enzymes were fully processive on this template. DNA replication by Poldelta* on a natural DNA template was dependent on PCNA and on replication factor C. However, Poldelta*-mediated DNA synthesis proceeded inefficiently and was characterized by frequent pause sites. Reconstitution of Poldelta was achieved upon addition of Pol32p to Poldelta*.

UI MeSH Term Description Entries
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011067 Poly dA-dT Polydeoxyribonucleotides made up of deoxyadenine nucleotides and thymine nucleotides. Present in DNA preparations isolated from crab species. Synthetic preparations have been used extensively in the study of DNA. Poly(Deoxyadenylate-Thymidylate),Polydeoxyadenine Nucleotides-Polythymine Nucleotides,Poly dA dT,Poly(dA-dT),d(A(5)T(5))2,Nucleotides, Polydeoxyadenine Nucleotides-Polythymine,Nucleotides-Polythymine Nucleotides, Polydeoxyadenine,Polydeoxyadenine Nucleotides Polythymine Nucleotides,dA dT, Poly,dA-dT, Poly,dT, Poly dA
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004258 DNA Polymerase III A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms but may be present in higher organisms. Use also for a more complex form of DNA polymerase III designated as DNA polymerase III* or pol III* which is 15 times more active biologically than DNA polymerase I in the synthesis of DNA. This polymerase has both 3'-5' and 5'-3' exonuclease activities, is inhibited by sulfhydryl reagents, and has the same template-primer dependence as pol II. DNA Polymerase delta,DNA-Dependent DNA Polymerase III,DNA Pol III,DNA Dependent DNA Polymerase III,Polymerase III, DNA,Polymerase delta, DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D015966 Gene Expression Regulation, Fungal Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi. Fungal Gene Expression Regulation,Regulation of Gene Expression, Fungal,Regulation, Gene Expression, Fungal

Related Publications

P M Burgers, and K J Gerik
November 2001, The Journal of biological chemistry,
P M Burgers, and K J Gerik
December 1999, The Journal of biological chemistry,
P M Burgers, and K J Gerik
September 1983, The Journal of biological chemistry,
P M Burgers, and K J Gerik
July 1995, European journal of biochemistry,
P M Burgers, and K J Gerik
January 1995, Methods in enzymology,
P M Burgers, and K J Gerik
April 2003, The Journal of biological chemistry,
P M Burgers, and K J Gerik
January 1995, Molecular & general genetics : MGG,
P M Burgers, and K J Gerik
January 2006, Nature structural & molecular biology,
Copied contents to your clipboard!