Regulation of the Na+2Cl–K+ cotransporter in in vitro perfused rectal gland tubules of Squalus acanthias. 1998

R Warth, and M Bleich, and I Thiele, and F Lang, and R Greger
Physiologisches Institut, Albert-Ludwigs-Universität, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany.

Previously it has been shown that the Na+2Cl–K+ cotransporter accepts NH4 + at its K+ binding site. This property can be used to estimate its transport rates by adding NH4 + to the bath and measuring the initial furosemide-dependent rates of change in BCECF fluorescence. We have utilized this technique to determine the regulation of the furosemide-inhibitable Na+2Cl–K+ cotransporter in in vitroperfused rectal gland tubules (RGT) of Squalus acanthias. Addition of NH4 + to the bath (20 mmol/l) led to an initial alkalinization, corresponding to NH3 uptake. This was followed by an acidification, corresponding to NH4 + uptake. The rate of this uptake was quantified by exponential curve fitting and is given in arbitrary units (Δfluorescence/time). This acidification could be completely inhibited by furosemide. In the absence of any secretagogue preincubation of RGT in a low Cl– solution (6 mmol/l, low Cl–) for 10 min enhanced the uptake rate significantly from 4.04±0.51 to 12.7±1.30 (n=5). The addition of urea (200 mmol/l) was without effect, but the addition of 300 mmol/l mannitol (+300 mannitol) enhanced the rate significantly from 7.24±1.33 to 14.7±4.6 (n=6). Stimulation of NaCl secretion by a solution maximizing the cytosolic cAMP concentration (Stim) led to a significant increase in NH4 + uptake rate from 5.00±1.33 to 13.3±1.54 (n=6). Similar results were obtained in the additional presence of Ba2+ (1 mmol/l): the uptake rate was increased significantly from 4.23±0.34 to 15.1±1.86 (n=16). In the presence of Stim low Cl– had no additional effect on the uptake rate: 15.1±3.1 versus 15.2±2.8 in high Cl– (n=6). The uptake rate in Stim containing additional +300 mannitol (22.3±4.0, n=5) was not significantly different from that obtained with Stim or +300 mannitol alone. By whatever mechanism the NH4 + uptake rate was increased furosemide (500 µmol/l) always reduced this rate to control values. Hence three manoeuvres enhanced furosemide-inhibitable uptake rates of the Na+2Cl–K+ cotransporter probably independently: (1) lowering of cytosolic Cl– concentration; (2) cell shrinkage; and (3) activation by cAMP.

UI MeSH Term Description Entries
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004232 Diuretics Agents that promote the excretion of urine through their effects on kidney function. Diuretic,Diuretic Effect,Diuretic Effects,Effect, Diuretic,Effects, Diuretic
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005665 Furosemide A benzoic-sulfonamide-furan. It is a diuretic with fast onset and short duration that is used for EDEMA and chronic RENAL INSUFFICIENCY. Frusemide,Fursemide,Errolon,Frusemid,Furanthril,Furantral,Furosemide Monohydrochloride,Furosemide Monosodium Salt,Fusid,Lasix
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000644 Quaternary Ammonium Compounds Derivatives of ammonium compounds, NH4+ Y-, in which all four of the hydrogens bonded to nitrogen have been replaced with hydrocarbyl groups. These are distinguished from IMINES which are RN Quaternary Ammonium Compound,Ammonium Compound, Quaternary,Ammonium Compounds, Quaternary,Compound, Quaternary Ammonium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012491 Salt Gland A compound tubular gland, located around the eyes and nasal passages in marine animals and birds, the physiology of which figures in water-electrolyte balance. The Pekin duck serves as a common research animal in salt gland studies. A rectal gland or rectal salt gland in the dogfish shark is attached at the junction of the intestine and cloaca and aids the kidneys in removing excess salts from the blood. (Storer, Usinger, Stebbins & Nybakken: General Zoology, 6th ed, p658) Rectal Gland,Gland, Rectal,Gland, Salt,Glands, Rectal,Glands, Salt,Rectal Glands,Salt Glands
D048251 Squalus acanthias A species of shark in the family SQUALIDAE, used for its oil (SQUALENE) and as fish meal. It also figures heavily in biological research, especially with reference to its RECTAL GLAND in studies of WATER-ELECTROLYTE BALANCE. Dogfish, Spiny,Spiny Dogfish
D048429 Cell Size The quantity of volume or surface area of CELLS. Cell Volume,Cell Sizes,Cell Volumes,Size, Cell,Sizes, Cell,Volume, Cell,Volumes, Cell

Related Publications

R Warth, and M Bleich, and I Thiele, and F Lang, and R Greger
July 1999, Pflugers Archiv : European journal of physiology,
R Warth, and M Bleich, and I Thiele, and F Lang, and R Greger
September 1984, Pflugers Archiv : European journal of physiology,
R Warth, and M Bleich, and I Thiele, and F Lang, and R Greger
February 2001, Biochimica et biophysica acta,
R Warth, and M Bleich, and I Thiele, and F Lang, and R Greger
October 1979, The Journal of cell biology,
R Warth, and M Bleich, and I Thiele, and F Lang, and R Greger
January 1988, Methods in enzymology,
R Warth, and M Bleich, and I Thiele, and F Lang, and R Greger
September 1989, Toxicology and applied pharmacology,
R Warth, and M Bleich, and I Thiele, and F Lang, and R Greger
January 1983, The Journal of membrane biology,
R Warth, and M Bleich, and I Thiele, and F Lang, and R Greger
September 1982, The American journal of physiology,
R Warth, and M Bleich, and I Thiele, and F Lang, and R Greger
December 1980, Biochimica et biophysica acta,
R Warth, and M Bleich, and I Thiele, and F Lang, and R Greger
June 1990, Biochimica et biophysica acta,
Copied contents to your clipboard!