Mechanisms of action of 2,3-dimercaptopropane-1-sulfonate and the transport, disposition, and toxicity of inorganic mercury in isolated perfused segments of rabbit proximal tubules. 1998

R K Zalups, and L D Parks, and V T Cannon, and D W Barfuss
Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207, USA. zalups@gain.mercer.edu

Mechanisms by which the dithiol chelating agent 2, 3-dimercaptopropane-1-sulfonate (DMPS) significantly alters the renal tubular transport, accumulation, and toxicity of inorganic mercury were studied in isolated perfused pars recta (S2) segments of proximal tubules of rabbits. Addition of 200 microM DMPS to the bath provided complete protection from the toxic effects of 20 microM inorganic mercury in the lumen. The protection was linked to decreased uptake and accumulation of mercury. Additional data indicated that, when DMPS and inorganic mercury were coperfused through the lumen, very little inorganic mercury was taken up from the lumen. We also obtained data indicating that DMPS is transported by the organic anion transport system and that this transport is linked to the therapeutic effects of DMPS. Interestingly, very little inorganic mercury was taken up and no cellular pathological changes were detected when inorganic mercury and DMPS were added to the bath. We also tested the hypothesis that DMPS can extract cellular mercury while being transported from the bath into the luminal compartment. Our findings showed that, when DMPS was applied to the basolateral membranes of S2 segments after they had been exposed to mercuric conjugates of glutathione of the laminal membrane, the tubular content of mercury was greatly reduced and the rates of disappearance of mercury from the lumen changed from positive values to markedly negative values. We conclude that inorganic mercury is extracted from proximal tubular cells by a transport process involving the movement of DMPS from the bathing compartment to the luminal compartment.

UI MeSH Term Description Entries
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D008628 Mercury A silver metallic element that exists as a liquid at room temperature. It has the atomic symbol Hg (from hydrargyrum, liquid silver), atomic number 80, and atomic weight 200.59. Mercury is used in many industrial applications and its salts have been employed therapeutically as purgatives, antisyphilitics, disinfectants, and astringents. It can be absorbed through the skin and mucous membranes which leads to MERCURY POISONING. Because of its toxicity, the clinical use of mercury and mercurials is diminishing.
D010130 p-Aminohippuric Acid The glycine amide of 4-aminobenzoic acid. Its sodium salt is used as a diagnostic aid to measure effective renal plasma flow (ERPF) and excretory capacity. 4-Aminohippuric Acid,para-Aminohippuric Acid,Aminohippurate Sodium,Aminohippuric Acid,Nephrotest,Sodium Para-Aminohippurate,p-Aminohippurate,4 Aminohippuric Acid,Para-Aminohippurate, Sodium,Sodium Para Aminohippurate,Sodium, Aminohippurate,p Aminohippurate,p Aminohippuric Acid,para Aminohippuric Acid
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D005260 Female Females
D005977 Glutarates Derivatives of glutaric acid (the structural formula (COO-)2C3H6), including its salts and esters. Glutarate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

R K Zalups, and L D Parks, and V T Cannon, and D W Barfuss
October 1991, Journal of the American Society of Nephrology : JASN,
R K Zalups, and L D Parks, and V T Cannon, and D W Barfuss
December 1986, JAMA,
R K Zalups, and L D Parks, and V T Cannon, and D W Barfuss
December 2000, American journal of physiology. Cell physiology,
R K Zalups, and L D Parks, and V T Cannon, and D W Barfuss
October 1977, The American journal of physiology,
R K Zalups, and L D Parks, and V T Cannon, and D W Barfuss
March 2010, Toxicology letters,
R K Zalups, and L D Parks, and V T Cannon, and D W Barfuss
July 1993, Toxicology and applied pharmacology,
R K Zalups, and L D Parks, and V T Cannon, and D W Barfuss
April 1996, The Journal of pharmacology and experimental therapeutics,
R K Zalups, and L D Parks, and V T Cannon, and D W Barfuss
July 1979, Journal of toxicology and environmental health,
R K Zalups, and L D Parks, and V T Cannon, and D W Barfuss
February 1978, Archives of toxicology,
Copied contents to your clipboard!