Ligand-dependent regulation of NPR-A gene expression in inner medullary collecting duct cells. 1998

L Cao, and S C Chen, and T Cheng, and M H Humphreys, and D G Gardner
Metabolic Research Unit and Department of Medicine, University of California at San Francisco, California 94143, USA.

Atrial natriuretic peptide (ANP) interacts with high-affinity, guanylyl cyclase-linked receptors in the inner medullary collecting duct (IMCD), where it exerts important regulatory control over sodium handling. We sought to determine whether receptor activity in these cells would be modulated (downregulated) by prolonged exposure to ligand. A number of natriuretic peptides (ANP, brain natriuretic peptide, and urodilatin) were found to decrease ligand-dependent natriuretic peptide receptor A (NPR-A) activity in IMCD cells. This inhibition was in direct proportion to their capacity to increase basal cGMP levels in this cell population. The reduction in receptor activity was accompanied by a dose- and time-dependent reduction in NPR-A mRNA levels in these cells. The decrease in transcript levels arose, in part, from a reduction in NPR-A gene transcription. ANP reduced NPR-A gene promoter activity in a transiently transfected IMCD cell population. 8-Bromo-cGMP was also effective in inhibiting NPR-A mRNA levels and NPR-A promoter activity, suggesting that the second messenger (i.e., cGMP) rather than ANP, itself, is responsible for downregulation of NPR-A gene expression.

UI MeSH Term Description Entries
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D007685 Kidney Tubules, Collecting Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla. Kidney Collecting Ducts,Kidney Collecting Duct,Collecting Duct, Kidney,Collecting Ducts, Kidney
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic

Related Publications

L Cao, and S C Chen, and T Cheng, and M H Humphreys, and D G Gardner
April 2004, Hypertension (Dallas, Tex. : 1979),
L Cao, and S C Chen, and T Cheng, and M H Humphreys, and D G Gardner
May 1996, The American journal of physiology,
L Cao, and S C Chen, and T Cheng, and M H Humphreys, and D G Gardner
August 1993, The American journal of physiology,
L Cao, and S C Chen, and T Cheng, and M H Humphreys, and D G Gardner
November 1991, American journal of kidney diseases : the official journal of the National Kidney Foundation,
L Cao, and S C Chen, and T Cheng, and M H Humphreys, and D G Gardner
June 2013, Journal of visualized experiments : JoVE,
L Cao, and S C Chen, and T Cheng, and M H Humphreys, and D G Gardner
November 1998, The American journal of physiology,
L Cao, and S C Chen, and T Cheng, and M H Humphreys, and D G Gardner
February 2011, Cellular signalling,
L Cao, and S C Chen, and T Cheng, and M H Humphreys, and D G Gardner
May 1993, The American journal of physiology,
L Cao, and S C Chen, and T Cheng, and M H Humphreys, and D G Gardner
May 1987, Kidney international,
L Cao, and S C Chen, and T Cheng, and M H Humphreys, and D G Gardner
April 1993, Journal of the American Society of Nephrology : JASN,
Copied contents to your clipboard!