NH2-terminal structural motifs in staphylokinase required for plasminogen activation. 1998

B Schlott, and K H Gührs, and M Hartmann, and A Röcker, and D Collen
Institute for Molecular Biotechnology, Jena, 07745 Germany. bschlott@sanger.imb-jena.de

Staphylokinase (Sak) forms an inactive 1:1 stoichiometric complex with plasminogen which requires both conversion of plasminogen to plasmin and hydrolysis of the Lys10-Lys11 peptide bond of Sak to become a potent plasminogen activator (Schlott, B., Guhrs, K.-H., Hartmann, M., Rocker, A., and Collen, D. (1997) J. Biol. Chem. 272, 6067-6072). Exposure of a positively charged NH2-terminal amino acid after hydrolysis of Sak is a major determinant of the plasminogen-activating potential, but in itself is neither necessary nor sufficient. Here, the structural motifs of the NH2-terminal region Lys11-Gly-Asp-Asp-Ala-Ser16-Tyr-Phe-Glu of processed Sak, required for plasminogen activating potential, were studied by deletion and substitution mutagenesis. Expression in Escherichia coli of variants with deletion of 11, 14, 15, or 16 NH2-terminal amino acids yielded correctly processed but inactive molecules. Expression of their homologues with the NH2-terminal amino acid substituted with Lys-generated derivatives from which the NH2-terminal initiation Met was no longer removed, yielding inactive (</= 10%) Sak42DDeltaN11(M),G12K, active (>50%) Sak42DDeltaN14(M), A15K and Sak42DDeltaN15(M),S16K, and inactive Sak42DDeltaN16(M),Y17K. Lys variants without NH2-terminal Met, generated from fusion proteins in which a His6 tag and a factor Xa recognition sequence were linked to the NH2 terminus of the Sak variants, were indistinguishable from their NH2-terminal Met-containing counterparts. All variants studied had intact affinities for plasminogen as measured by biospecific interaction analysis. The activity of Sak42DDeltaN11(M),G12K could be restored by additional substitution of both Asp13 and Asp14 with Asn, yielding active Sak42DDeltaN11(M),G12K, D13N, D14N, whereas substitution in Sak42DDeltaN16(M),Y17K of Phe18 and Glu19 with Asn yielded inactive Sak42DDeltaN16(M),Y17K,F18N,E19N. These data, in combination with the recent finding that the 20 NH2-terminal amino acids of Sak lack secondary structure, suggest that the NH2-terminal region of Sak is not required for binding to plasmin/plasminogen, but that a positively charged amino acid in the ultimate or penultimate NH2-terminal position corresponding to amino acids 11-16 of this flexible region participates in the reconfiguration of the active site of the plasmin molecule to endow it with plasminogen-activating potential.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008666 Metalloendopeptidases ENDOPEPTIDASES which use a metal such as ZINC in the catalytic mechanism. Metallo-Endoproteinases,Metalloendopeptidase
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010958 Plasminogen Precursor of plasmin (FIBRINOLYSIN). It is a single-chain beta-globulin of molecular weight 80-90,000 found mostly in association with fibrinogen in plasma; plasminogen activators change it to fibrinolysin. It is used in wound debriding and has been investigated as a thrombolytic agent. Profibrinolysin,Glu-Plasminogen,Glutamic Acid 1-Plasminogen,Glutamyl Plasminogen,1-Plasminogen, Glutamic Acid,Glu Plasminogen,Glutamic Acid 1 Plasminogen,Plasminogen, Glutamyl
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

B Schlott, and K H Gührs, and M Hartmann, and A Röcker, and D Collen
April 1999, Thrombosis and haemostasis,
B Schlott, and K H Gührs, and M Hartmann, and A Röcker, and D Collen
February 1960, Nature,
B Schlott, and K H Gührs, and M Hartmann, and A Röcker, and D Collen
January 1975, Acta biochimica Polonica,
B Schlott, and K H Gührs, and M Hartmann, and A Röcker, and D Collen
August 1995, Biochimica et biophysica acta,
B Schlott, and K H Gührs, and M Hartmann, and A Röcker, and D Collen
January 1993, Methods in enzymology,
B Schlott, and K H Gührs, and M Hartmann, and A Röcker, and D Collen
July 1960, The Biochemical journal,
B Schlott, and K H Gührs, and M Hartmann, and A Röcker, and D Collen
January 1998, Journal of biochemistry,
B Schlott, and K H Gührs, and M Hartmann, and A Röcker, and D Collen
October 1994, Thrombosis research,
B Schlott, and K H Gührs, and M Hartmann, and A Röcker, and D Collen
September 2008, Journal of molecular biology,
B Schlott, and K H Gührs, and M Hartmann, and A Röcker, and D Collen
October 1994, Thrombosis research,
Copied contents to your clipboard!