Appearance of glucose-induced insulin release in fetal rat beta-cells. 1998

P Bergsten, and K Aoyagi, and E Persson, and U J Eriksson, and C Hellerström
Department of Medical Cell Biology, Uppsala University, Sweden.

Fetal rat pancreatic cells were isolated from pancreatic primordia on days 12-14 of pregnancy and cultured for 48 h in the presence of 5 mmol/l glucose. Insulin accumulation in the medium over the next 24 h was measured. Cultured cells from day 12 fetuses secreted about 1 fmol insulin per pancreas in response to 5 or 15 mmol/l glucose irrespective of whether 1 mmol/l tolbutamide, 400 mumol/l diazoxide, 5 mmol/l theophylline or 10 mmol/l mannoheptulose was present. In contrast, insulin released from day 13 cultured cells increased significantly from 3.0 +/- 0.6 to 6.2 +/- 2.2 fmol per pancreas, when the glucose concentration was raised. Tolbutamide increased, diazoxide and mannoheptulose decreased and theophylline had no effect on insulin release. Even more pronounced effects were found on insulin release from day 14 cultured cells, in which theophylline also increased the release. In addition, insulin release from cells from pregnancy day 14 was 75 +/- 16 amol/min per pancreas when the cells were perifused for 15-20 min in the presence of 5 mmol/l glucose within 3 h of isolation. Increasing the glucose concentration to 15 mmol/l or adding tolbutamide increased, whereas diazoxide decreased, insulin release in the freshly isolated cells. The insulin content of rat pancreata from pregnancy day 13 was 0.06 +/- 0.01 pmol per pancreas and increased approximately 10-fold every second day up to 6.7 +/- 0.9 pmol on day 17 of pregnancy. Between day 17 and 19 the pancreatic insulin content increased about fivefold to 39 +/- 2 pmol. The present data suggest that critical components of the insulin-secretory machinery, including ATP-regulated K+ channels, glucokinase and adenylate cyclase activities, are present in the developing beta-cell earlier than hitherto thought.

UI MeSH Term Description Entries
D007004 Hypoglycemic Agents Substances which lower blood glucose levels. Antidiabetic,Antidiabetic Agent,Antidiabetic Drug,Antidiabetics,Antihyperglycemic,Antihyperglycemic Agent,Hypoglycemic,Hypoglycemic Agent,Hypoglycemic Drug,Antidiabetic Agents,Antidiabetic Drugs,Antihyperglycemic Agents,Antihyperglycemics,Hypoglycemic Drugs,Hypoglycemic Effect,Hypoglycemic Effects,Hypoglycemics,Agent, Antidiabetic,Agent, Antihyperglycemic,Agent, Hypoglycemic,Agents, Antidiabetic,Agents, Antihyperglycemic,Agents, Hypoglycemic,Drug, Antidiabetic,Drug, Hypoglycemic,Drugs, Antidiabetic,Drugs, Hypoglycemic,Effect, Hypoglycemic,Effects, Hypoglycemic
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008356 Mannoheptulose A 7-carbon keto sugar having the mannose configuration. Mannoketoheptose
D010726 Phosphodiesterase Inhibitors Compounds which inhibit or antagonize the biosynthesis or actions of phosphodiesterases. Phosphodiesterase Antagonists,Phosphodiesterase Inhibitor,Phosphoric Diester Hydrolase Inhibitors,Antiphosphodiesterases,Inhibitor, Phosphodiesterase
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003981 Diazoxide A benzothiadiazine derivative that is a peripheral vasodilator used for hypertensive emergencies. It lacks diuretic effect, apparently because it lacks a sulfonamide group. Hyperstat,Proglycem
D004232 Diuretics Agents that promote the excretion of urine through their effects on kidney function. Diuretic,Diuretic Effect,Diuretic Effects,Effect, Diuretic,Effects, Diuretic
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose

Related Publications

P Bergsten, and K Aoyagi, and E Persson, and U J Eriksson, and C Hellerström
January 1977, Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion,
P Bergsten, and K Aoyagi, and E Persson, and U J Eriksson, and C Hellerström
October 2002, Diabetes,
P Bergsten, and K Aoyagi, and E Persson, and U J Eriksson, and C Hellerström
September 2009, World journal of gastroenterology,
P Bergsten, and K Aoyagi, and E Persson, and U J Eriksson, and C Hellerström
January 1990, Acta physiologica Hungarica,
P Bergsten, and K Aoyagi, and E Persson, and U J Eriksson, and C Hellerström
July 1995, Diabetes,
P Bergsten, and K Aoyagi, and E Persson, and U J Eriksson, and C Hellerström
October 1997, The Journal of physiology,
P Bergsten, and K Aoyagi, and E Persson, and U J Eriksson, and C Hellerström
July 1966, Metabolism: clinical and experimental,
P Bergsten, and K Aoyagi, and E Persson, and U J Eriksson, and C Hellerström
October 1980, Research communications in chemical pathology and pharmacology,
P Bergsten, and K Aoyagi, and E Persson, and U J Eriksson, and C Hellerström
October 1996, The American journal of physiology,
P Bergsten, and K Aoyagi, and E Persson, and U J Eriksson, and C Hellerström
July 2007, American journal of physiology. Endocrinology and metabolism,
Copied contents to your clipboard!