Induction of erythroid differentiation in vitro by purines and purine analogues. 1976

J F Gusella, and D Housman

The effectiveness of purines and purine analogues as inducers of erythroid differentiation in cultured murine erythroleukemia cells has been investigated. These cell lines have previously been shown to differentiate in vitro in response to dimethylsulfoxide (DMSO) and a number of other polar solvents. Two purine analogues, 6-thioguanine and 6-mercaptopurine, as well as the naturally occuring purine, purine, hypoxanthine, are shown to be extremely potent inducers. 6-Thioguanine is effective at a concentration of 0.06 mM, 750 fold lower than the DMSO concentration required for equivalent induction. 6-Mercaptopurine and hypoxanthine are effective inducers at a concentration of approximately 2 mM. Accumulation of globin mRNA was monitored during induction with purine inducers and shown to be similar in amount to globin mRNA levels reached in DMSO-induced cultures. Induction of differentiation by all three compounds follows a similar time course to induction with DMSO. All three compounds are potent inducers of HGPRT (hypoxanthine-guanine phosphoribosyltransferase)-negative cell lines; hence incorporation of purines into DNA is not required for induction of differentiation. Comparison of these compounds with other purines and purine analogues suggests a high degree of specificity in their interaction with a cellular target.

UI MeSH Term Description Entries
D007042 Hypoxanthines Purine bases related to hypoxanthine, an intermediate product of uric acid synthesis and a breakdown product of adenine catabolism.
D011687 Purines A series of heterocyclic compounds that are variously substituted in nature and are known also as purine bases. They include ADENINE and GUANINE, constituents of nucleic acids, as well as many alkaloids such as CAFFEINE and THEOPHYLLINE. Uric acid is the metabolic end product of purine metabolism.
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004121 Dimethyl Sulfoxide A highly polar organic liquid, that is used widely as a chemical solvent. Because of its ability to penetrate biological membranes, it is used as a vehicle for topical application of pharmaceuticals. It is also used to protect tissue during CRYOPRESERVATION. Dimethyl sulfoxide shows a range of pharmacological activity including analgesia and anti-inflammation. DMSO,Dimethyl Sulphoxide,Dimethylsulfoxide,Dimethylsulphinyl,Dimethylsulphoxide,Dimexide,Rheumabene,Rimso,Rimso 100,Rimso-50,Sclerosol,Sulfinylbis(methane),Rimso 50,Rimso50,Sulfoxide, Dimethyl,Sulphoxide, Dimethyl
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004920 Erythropoiesis The production of red blood cells (ERYTHROCYTES). In humans, erythrocytes are produced by the YOLK SAC in the first trimester; by the liver in the second trimester; by the BONE MARROW in the third trimester and after birth. In normal individuals, the erythrocyte count in the peripheral blood remains relatively constant implying a balance between the rate of erythrocyte production and rate of destruction. Erythropoieses
D005914 Globins A superfamily of proteins containing the globin fold which is composed of 6-8 alpha helices arranged in a characterstic HEME enclosing structure. Globin
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013866 Thioguanine An antineoplastic compound which also has antimetabolite action. The drug is used in the therapy of acute leukemia. 6-Thioguanine,2-Amino-6-Purinethiol,Lanvis,Tabloid,Thioguanin-GSK,Thioguanine Anhydrous,Thioguanine Hemihydrate,Thioguanine Monosodium Salt,Thioguanine Tabloid,Tioguanina Wellcome,Tioguanine,2 Amino 6 Purinethiol,6 Thioguanine,Anhydrous, Thioguanine,Thioguanin GSK,ThioguaninGSK

Related Publications

J F Gusella, and D Housman
January 1994, Advances in experimental medicine and biology,
J F Gusella, and D Housman
May 1980, Proceedings of the National Academy of Sciences of the United States of America,
J F Gusella, and D Housman
January 1960, Plant physiology,
J F Gusella, and D Housman
June 1985, Archives of biochemistry and biophysics,
J F Gusella, and D Housman
March 1961, Journal of bacteriology,
J F Gusella, and D Housman
October 1955, Experimental cell research,
J F Gusella, and D Housman
August 1973, Antimicrobial agents and chemotherapy,
J F Gusella, and D Housman
August 1968, Biochimica et biophysica acta,
J F Gusella, and D Housman
September 1983, Biochemical and biophysical research communications,
J F Gusella, and D Housman
June 1978, Journal of cellular physiology,
Copied contents to your clipboard!