Nitric oxide release as an essential mitigating step in tubuloglomerular feedback: observations during intrarenal nitric oxide clamp. 1998

E Turkstra, and B Braam, and H A Koomans
Department of Nephrology and Hypertension, University Hospital Utrecht, The Netherlands.

Nitric oxide synthase inhibition in the kidney enhances tubuloglomerular feedback (TGF) responsiveness. This may reflect either the effect of reduced basal nitric oxide (NO) availability or the effect of impaired NO release that is physiologically induced by TGF activation. However, it is unknown whether the latter actually takes place. In this study, it was hypothesized that NO is released (from macula densa cells or endothelium) as part of the normal TGF loop, and mitigates the TGF response. In Sprague Dawley rats, TGF responsiveness was assessed (fall in tubular stop flow pressure, deltaSFP, upon switching loop of Henle perfusion rates from 0 to 40 nl/min) during an intrarenal NO clamp (systemic infusion of nitro-L-arginine, 10 microg/kg per min, followed by intrarenal nitroprusside infusion adjusted to restore renal blood flow [RBF]). This maneuver was presumed to fix intrarenal NO impact at a physiologic level. To validate the approach, TGF responsiveness during an intrarenal angiotensin II (AngII) clamp (systemic infusion of enalaprilat 0.2 mg/kg per min, followed by intrarenal AngII infusion) was also studied. AngII is presumed to modulate but not mediate, TGF, thus not to increase as part of the TGF loop. In untreated animals, RBF was 7.4 +/- 0.4 ml/min, and deltaSFP was 5.7 +/- 1.6 mmHg. Nitro-L-arginine infusion alone reduced RBF to 5.3 +/- 0.5 ml/min (P < 0.05); with nitroprusside infusion, RBF was restored to 8.3 +/- 0.7 ml/min. In this condition (NO clamp), deltaSFP was markedly increased to 19.6 +/- 3.2 mmHg (P < 0.05). By contrast, deltaSFP, which was virtually abolished during enalaprilat alone (0.2 +/- 0.3 mmHg), was not significantly different from controls during AngII clamp (8.2 +/- 1.0 mmHg). These data suggest that NO may well be released upon TGF activation. By contrast, AngII is not dynamically involved in TGF activation, but may modulate the TGF response. Thus, dynamic release of NO during TGF activation mitigates the TGF response, so that it will offset the action of a primary, as yet undefined, vasoconstrictor mediator. The source of this NO, macula densa or endothelium, remains to be elucidated.

UI MeSH Term Description Entries
D007678 Kidney Glomerulus A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue. Glomerulus, Kidney
D007684 Kidney Tubules Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER. Kidney Tubule,Tubule, Kidney,Tubules, Kidney
D008297 Male Males
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D011311 Pressoreceptors Receptors in the vascular system, particularly the aorta and carotid sinus, which are sensitive to stretch of the vessel walls. Baroreceptors,Receptors, Stretch, Arterial,Receptors, Stretch, Vascular,Stretch Receptors, Arterial,Stretch Receptors, Vascular,Arterial Stretch Receptor,Arterial Stretch Receptors,Baroreceptor,Pressoreceptor,Receptor, Arterial Stretch,Receptor, Vascular Stretch,Receptors, Arterial Stretch,Receptors, Vascular Stretch,Stretch Receptor, Arterial,Stretch Receptor, Vascular,Vascular Stretch Receptor,Vascular Stretch Receptors
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D012079 Renal Circulation The circulation of the BLOOD through the vessels of the KIDNEY. Kidney Circulation,Renal Blood Flow,Circulation, Kidney,Circulation, Renal,Blood Flow, Renal,Flow, Renal Blood
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004656 Enalapril An angiotensin-converting enzyme inhibitor that is used to treat HYPERTENSION and HEART FAILURE. Enalapril Maleate,MK-421,MK421,Renitec,Renitek,MK 421,Maleate, Enalapril
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme

Related Publications

E Turkstra, and B Braam, and H A Koomans
May 1999, Seminars in nephrology,
E Turkstra, and B Braam, and H A Koomans
June 1996, Kidney international. Supplement,
E Turkstra, and B Braam, and H A Koomans
January 2003, Annual review of physiology,
E Turkstra, and B Braam, and H A Koomans
October 1994, The American journal of physiology,
E Turkstra, and B Braam, and H A Koomans
October 2002, Acta physiologica Scandinavica,
E Turkstra, and B Braam, and H A Koomans
August 1997, Clinical and experimental pharmacology & physiology,
E Turkstra, and B Braam, and H A Koomans
April 2006, American journal of physiology. Regulatory, integrative and comparative physiology,
E Turkstra, and B Braam, and H A Koomans
January 2000, Acta physiologica Scandinavica,
E Turkstra, and B Braam, and H A Koomans
January 2003, Kidney & blood pressure research,
E Turkstra, and B Braam, and H A Koomans
December 1995, The American journal of physiology,
Copied contents to your clipboard!