Developmental remodeling and shortening of the cardiac outflow tract involves myocyte programmed cell death. 1998

M Watanabe, and A Choudhry, and M Berlan, and A Singal, and E Siwik, and S Mohr, and S A Fisher
Division of Pediatric Cardiology, Department of Pediatrics, Rainbow Babies and Childrens Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA. mxw13@po.cwru.edu

The embryonic outflow tract is a simple tubular structure that connects the single primitive ventricle with the aortic sac and aortic arch arteries. This structure undergoes a complex sequence of morphogenetic processes to become the portion of the heart that aligns the right and left ventricles with the pulmonary artery and aorta. Abnormalities of the outflow tract are involved in many clinically significant congenital cardiac defects; however, the cellular and molecular processes governing the development of this important structure are incompletely understood. Histologic and tissue-tagging studies indicate that the outflow tract tissues compact and are incorporated predominantly into a region of the right ventricle. The hypothesis tested in the current study was that cell death or apoptosis in the muscular portion of the outflow tract is an important cellular mechanism for outflow tract shortening. The tubular outflow tract myocardium was specifically marked by infecting myocytes of the chicken embryo heart with a recombinant replication-defective adenovirus expressing beta-galactosidase (beta-gal) under the control of the cytomegalovirus promoter. Histochemical detection of the beta -gal-labeled outflow tract myocytes revealed that the tubular structure shortened to become a compact ring at the level of the pulmonic infundibulum over several days of development (stages 25-32, embryonic days 4-8). The appearance of apoptotic cardiomyocytes was correlated with OFT shortening by two histologic assays, TUNEL labeling of DNA fragments and AnnexinV binding. The rise and fall in the number of apoptotic myocytes detected by histologic analyses paralleled the change in activity levels of Caspase-3, a protease in the apoptotic cascade, measured in outflow tract homogenates. These results suggest that the elimination of myocytes by programmed cell death is one mechanism by which the outflow tract myocardium remodels to form the proper connection between the ventricular chambers and the appropriate arterial trunks.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000256 Adenoviridae A family of non-enveloped viruses infecting mammals (MASTADENOVIRUS) and birds (AVIADENOVIRUS) or both (ATADENOVIRUS). Infections may be asymptomatic or result in a variety of diseases. Adenoviruses,Ichtadenovirus,Adenovirus,Ichtadenoviruses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D017304 Annexin A5 A protein of the annexin family isolated from human PLACENTA and other tissues. It inhibits cytosolic PHOSPHOLIPASE A2, and displays anticoagulant activity. Annexin V,Placental Anticoagulant Protein I,Anchorin CII,Calphobindin I,Endonexin II,Lipocortin V,Lipocortin-V

Related Publications

M Watanabe, and A Choudhry, and M Berlan, and A Singal, and E Siwik, and S Mohr, and S A Fisher
November 1995, The Journal of clinical investigation,
M Watanabe, and A Choudhry, and M Berlan, and A Singal, and E Siwik, and S Mohr, and S A Fisher
March 1997, Current opinion in nephrology and hypertension,
M Watanabe, and A Choudhry, and M Berlan, and A Singal, and E Siwik, and S Mohr, and S A Fisher
May 2013, Developmental dynamics : an official publication of the American Association of Anatomists,
M Watanabe, and A Choudhry, and M Berlan, and A Singal, and E Siwik, and S Mohr, and S A Fisher
January 2015, Biological & pharmaceutical bulletin,
M Watanabe, and A Choudhry, and M Berlan, and A Singal, and E Siwik, and S Mohr, and S A Fisher
December 1995, Laboratory investigation; a journal of technical methods and pathology,
M Watanabe, and A Choudhry, and M Berlan, and A Singal, and E Siwik, and S Mohr, and S A Fisher
March 2003, Pharmacology & therapeutics,
M Watanabe, and A Choudhry, and M Berlan, and A Singal, and E Siwik, and S Mohr, and S A Fisher
March 1997, Experimental cell research,
M Watanabe, and A Choudhry, and M Berlan, and A Singal, and E Siwik, and S Mohr, and S A Fisher
March 2004, Developmental biology,
M Watanabe, and A Choudhry, and M Berlan, and A Singal, and E Siwik, and S Mohr, and S A Fisher
September 2004, Development (Cambridge, England),
M Watanabe, and A Choudhry, and M Berlan, and A Singal, and E Siwik, and S Mohr, and S A Fisher
December 2002, Current opinion in plant biology,
Copied contents to your clipboard!