Effect of surgery on neutrophil leukotriene B4 generation and arachidonic acid content. 1998

S Sane, and M Baba, and C Kusano, and K Shirao, and T Kamada, and T Aikou
First Department of Surgery, Kagoshima University School of Medicine, Kagoshima, Japan.

UI MeSH Term Description Entries
D007975 Leukotriene B4 The major metabolite in neutrophil polymorphonuclear leukocytes. It stimulates polymorphonuclear cell function (degranulation, formation of oxygen-centered free radicals, arachidonic acid release, and metabolism). (From Dictionary of Prostaglandins and Related Compounds, 1990) 5,12-HETE,5,12-diHETE,LTB4,Leukotriene B,Leukotriene B-4,Leukotrienes B,5,12 HETE,5,12 diHETE,B-4, Leukotriene,Leukotriene B 4
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly
D013514 Surgical Procedures, Operative Operations carried out for the correction of deformities and defects, repair of injuries, and diagnosis and cure of certain diseases. (Taber, 18th ed.). Surgical Procedures,Ghost Surgery,Operative Procedures,Operative Surgical Procedure,Operative Surgical Procedures,Procedure, Operative Surgical,Procedures, Operative Surgical,Surgery, Ghost,Surgical Procedure, Operative,Operative Procedure,Procedure, Operative,Procedure, Surgical,Procedures, Operative,Procedures, Surgical,Surgical Procedure
D016209 Interleukin-8 A member of the CXC chemokine family that plays a role in the regulation of the acute inflammatory response. It is secreted by variety of cell types and induces CHEMOTAXIS of NEUTROPHILS and other inflammatory cells. CXCL8 Chemokine,Chemokine CXCL8,Chemotactic Factor, Macrophage-Derived,Chemotactic Factor, Neutrophil, Monocyte-Derived,IL-8,Neutrophil-Activating Peptide, Lymphocyte-Derived,Neutrophil-Activating Peptide, Monocyte-Derived,AMCF-I,Alveolar Macrophage Chemotactic Factor-I,Anionic Neutrophil-Activating Peptide,Chemokines, CXCL8,Chemotactic Factor, Neutrophil,Granulocyte Chemotactic Peptide-Interleukin-8,IL8,Monocyte-Derived Neutrophil Chemotactic Factor,Neutrophil Activation Factor,Alveolar Macrophage Chemotactic Factor I,Anionic Neutrophil Activating Peptide,CXCL8 Chemokines,CXCL8, Chemokine,Chemokine, CXCL8,Chemotactic Factor, Macrophage Derived,Chemotactic Peptide-Interleukin-8, Granulocyte,Granulocyte Chemotactic Peptide Interleukin 8,Interleukin 8,Lymphocyte-Derived Neutrophil-Activating Peptide,Macrophage-Derived Chemotactic Factor,Monocyte-Derived Neutrophil-Activating Peptide,Neutrophil Activating Peptide, Lymphocyte Derived,Neutrophil Activating Peptide, Monocyte Derived,Neutrophil Chemotactic Factor,Neutrophil-Activating Peptide, Anionic,Peptide, Anionic Neutrophil-Activating
D016718 Arachidonic Acid An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes. (all-Z)-5,8,11,14-Eicosatetraenoic acid,Arachidonic Acid, (all-Z)-Isomer, 1-(14)C-Labeled,Arachidonic Acid, (all-Z)-isomer, 3H-Labeled,Arachidonic Acid, Ammonium Salt, (all-Z)-Isomer,Arachidonic Acid, Cerium Salt, (all-Z)-Isomer,Arachidonic Acid, Cesium Salt, (all-Z)-Isomer,Arachidonic Acid, Lithium Salt, (all-Z)-Isomer,Arachidonic Acid, Potassium Salt, (all-Z)-Isomer,Arachidonic Acid, Sodium Salt,Arachidonic Acid, Sodium Salt, (all-Z)-Isomer,Arachidonic Acid, Zinc Salt, (all-Z)-Isomer,Sodium Arachidonate,Vitamin F,Arachidonate, Sodium

Related Publications

S Sane, and M Baba, and C Kusano, and K Shirao, and T Kamada, and T Aikou
January 1983, Annals of the New York Academy of Sciences,
S Sane, and M Baba, and C Kusano, and K Shirao, and T Kamada, and T Aikou
October 1998, The Journal of pharmacology and experimental therapeutics,
S Sane, and M Baba, and C Kusano, and K Shirao, and T Kamada, and T Aikou
October 1996, The Journal of experimental medicine,
S Sane, and M Baba, and C Kusano, and K Shirao, and T Kamada, and T Aikou
October 1989, Inflammation,
S Sane, and M Baba, and C Kusano, and K Shirao, and T Kamada, and T Aikou
July 1990, Immunology letters,
S Sane, and M Baba, and C Kusano, and K Shirao, and T Kamada, and T Aikou
January 1984, FEBS letters,
S Sane, and M Baba, and C Kusano, and K Shirao, and T Kamada, and T Aikou
June 1982, Biochemical and biophysical research communications,
S Sane, and M Baba, and C Kusano, and K Shirao, and T Kamada, and T Aikou
April 1991, Scandinavian journal of immunology,
S Sane, and M Baba, and C Kusano, and K Shirao, and T Kamada, and T Aikou
January 1988, Methods in enzymology,
S Sane, and M Baba, and C Kusano, and K Shirao, and T Kamada, and T Aikou
April 2008, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!