Exogenous leukotriene B4 (LTB4) inhibits human neutrophil generation of LTB4 from endogenous arachidonic acid during opsonized zymosan phagocytosis. 1998

J Fiedler, and P Wheelan, and P M Henson, and R C Murphy
Department of Pediatrics, Division of Basic Sciences, National Jewish Medical and Research Center, Denver, Colorado, USA.

The effect of exogenous leukotriene B4 (LTB4) on opsonized zymosan-stimulated human neutrophil formation of 5-lipoxygenase products and arachidonic acid release was directly assessed using reverse-phase HPLC/tandem mass spectrometric methods for quantitation. Stable isotopically labeled LTB4, [1,2-13C2]LTB4, caused a dose-dependent inhibition of LTB4 production in isolated human neutrophils with significant inhibition (60 +/- 7% of control levels) when 0.12 nM [13C2]LTB4 was present. Production of 5-hydroxy-6,8,11,14-eicosatetraenoic acid and release of free arachidonic acid were also dose-dependently inhibited by exogenous LTB4. Metabolites of LTB4, 20-hydroxy-LTB4 and 3(S)-hydroxy-LTB4, also significantly reduced LTB4 production to levels as low as 10 +/- 6% and 10 +/- 7% of control levels, respectively, when present exogenously at 10 nM. Exogenous 5-hydroxy-6,8,11,14-eicosatetraenoic acid at concentrations as high as 10 nM produced no significant reduction in LTB4 biosynthesis during zymosan-stimulated human neutrophil production of LTB4. The inhibitory effect of LTB4 could be partially reversed by the LTB4 receptor antagonist U 75302. Furthermore, an alternative stimulus, N-formyl-methionyl-leucyl-phenylalanine (100 nM), did not inhibit the production of LTB4 in opsonized zymosan-stimulated human neutrophils. These results suggest that activation of the LTB4 receptor on the human neutrophil during phagocytosis limits the ultimate biosynthesis of LTB4. This autocrine effect is opposite to that observed when neutrophils have much of the signal transduction pathways bypassed when stimulated with calcium ionophore A23187 or treated with exogenous free arachidonic acid.

UI MeSH Term Description Entries
D007975 Leukotriene B4 The major metabolite in neutrophil polymorphonuclear leukocytes. It stimulates polymorphonuclear cell function (degranulation, formation of oxygen-centered free radicals, arachidonic acid release, and metabolism). (From Dictionary of Prostaglandins and Related Compounds, 1990) 5,12-HETE,5,12-diHETE,LTB4,Leukotriene B,Leukotriene B-4,Leukotrienes B,5,12 HETE,5,12 diHETE,B-4, Leukotriene,Leukotriene B 4
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005233 Fatty Alcohols Usually high-molecular-weight, straight-chain primary alcohols, but can also range from as few as 4 carbons, derived from natural fats and oils, including lauryl, stearyl, oleyl, and linoleyl alcohols. They are used in pharmaceuticals, cosmetics, detergents, plastics, and lube oils and in textile manufacture. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Fatty Alcohol,Alcohol, Fatty,Alcohols, Fatty
D006018 Glycols A generic grouping for dihydric alcohols with the hydroxy groups (-OH) located on different carbon atoms. They are viscous liquids with high boiling points for their molecular weights.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006893 Hydroxyeicosatetraenoic Acids Eicosatetraenoic acids substituted in any position by one or more hydroxy groups. They are important intermediates in a series of biosynthetic processes leading from arachidonic acid to a number of biologically active compounds such as prostaglandins, thromboxanes, and leukotrienes. HETE,Acids, Hydroxyeicosatetraenoic
D015054 Zymosan Zymosan A
D016718 Arachidonic Acid An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes. (all-Z)-5,8,11,14-Eicosatetraenoic acid,Arachidonic Acid, (all-Z)-Isomer, 1-(14)C-Labeled,Arachidonic Acid, (all-Z)-isomer, 3H-Labeled,Arachidonic Acid, Ammonium Salt, (all-Z)-Isomer,Arachidonic Acid, Cerium Salt, (all-Z)-Isomer,Arachidonic Acid, Cesium Salt, (all-Z)-Isomer,Arachidonic Acid, Lithium Salt, (all-Z)-Isomer,Arachidonic Acid, Potassium Salt, (all-Z)-Isomer,Arachidonic Acid, Sodium Salt,Arachidonic Acid, Sodium Salt, (all-Z)-Isomer,Arachidonic Acid, Zinc Salt, (all-Z)-Isomer,Sodium Arachidonate,Vitamin F,Arachidonate, Sodium

Related Publications

J Fiedler, and P Wheelan, and P M Henson, and R C Murphy
January 1983, Annals of the New York Academy of Sciences,
J Fiedler, and P Wheelan, and P M Henson, and R C Murphy
February 1988, Agents and actions,
J Fiedler, and P Wheelan, and P M Henson, and R C Murphy
January 1998, European surgical research. Europaische chirurgische Forschung. Recherches chirurgicales europeennes,
J Fiedler, and P Wheelan, and P M Henson, and R C Murphy
October 1996, The Journal of experimental medicine,
J Fiedler, and P Wheelan, and P M Henson, and R C Murphy
July 1990, Immunology letters,
J Fiedler, and P Wheelan, and P M Henson, and R C Murphy
April 2001, Infection and immunity,
J Fiedler, and P Wheelan, and P M Henson, and R C Murphy
August 1995, Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology,
J Fiedler, and P Wheelan, and P M Henson, and R C Murphy
December 1991, European journal of clinical investigation,
Copied contents to your clipboard!