Primary myotubes preferentially mature into either the fastest or slowest muscle fibers. 1998

M Zhang, and I S McLennan
Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand.

Myoblasts and myotubes are heterogeneous, but what is the significance of this heterogeneity? Is it a vital component of the mechanism by which a muscle develops or is it part of the process that generates mature fibers with diverse sizes, speeds of contracture, and metabolisms? We have begun to explore these questions by using BrdU to selectively label rat primary myotubes, thus enabling their mature characteristics to be defined for the first time. In the soleus, the type I fibers of primary myotube origin were 21% larger than those of secondary myotube origin, indicating that the origin of a fiber can affect its mature force production. In the extensor digitorum longus (EDL), the primary myotubes differentiated into all known fibers types, but with marked variation in frequency. In the superficial portion of the EDL, 97% of primary myotubes became IIB fibers, even though approximately 41% of the fibers in this region are IIA or IIX. In the deep portion, primary myotubes preferentially developed into type I fibers. Thus, primary myotubes in the EDL predominantly differentiate into the two most dissimilar fiber types: the slowest, smallest, most oxidative, type I fibers and the largest, fastest, most glycolytic, type IIB fibers. Each of the subtypes of primary myotubes had a different fate. In the EDL, the slow and fast primary myotubes appeared to differentiate into type I and IIB fibers, respectively. This implies that spatial and temporal signals operating in the limb are major determinants of the mature pattern of fiber types and that innervation of a muscle involves a selective matching between the various types of motoneurons and muscle fibers.

UI MeSH Term Description Entries
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018485 Muscle Fibers, Skeletal Large, multinucleate single cells, either cylindrical or prismatic in shape, that form the basic unit of SKELETAL MUSCLE. They consist of MYOFIBRILS enclosed within and attached to the SARCOLEMMA. They are derived from the fusion of skeletal myoblasts (MYOBLASTS, SKELETAL) into a syncytium, followed by differentiation. Myocytes, Skeletal,Myotubes,Skeletal Myocytes,Skeletal Muscle Fibers,Fiber, Skeletal Muscle,Fibers, Skeletal Muscle,Muscle Fiber, Skeletal,Myocyte, Skeletal,Myotube,Skeletal Muscle Fiber,Skeletal Myocyte

Related Publications

M Zhang, and I S McLennan
June 1973, Fysiatricky a reumatologicky vestnik,
M Zhang, and I S McLennan
May 1990, Development (Cambridge, England),
M Zhang, and I S McLennan
August 2010, American journal of physiology. Endocrinology and metabolism,
M Zhang, and I S McLennan
November 2000, Journal of applied physiology (Bethesda, Md. : 1985),
M Zhang, and I S McLennan
August 1995, Anatomy and embryology,
Copied contents to your clipboard!