Cloning and expression of a Xenopus short wavelength cone pigment. 1998

D M Starace, and B E Knox
Department of Biochemistry and Molecular Biology, SUNY Health Science Center, 750 East Adams Street, Syracuse, NY 13210, USA.

The short wavelength visual pigment from Xenopus responsible for vision in the blue/violet portion of the spectrum was characterized by sequence spectroscopic analysis. The amino acid sequence was deduced by sequencing clones isolated by reverse transcription PCR, from retinal cDNA and genomic libraries. The gene contains 5 exons spanning 8.4 kb of genomic DNA and produces an mRNA of 2.4 kb in length. The deduced amino acid sequence predicts a protein of 347 amino acids with 76-78% identity to other short wavelength opsins. The mRNA encoding the Xenopus violet pigment was detected using in situ hybridization in cones, comprising a few percent of the total photoreceptors in the adult retina. The Xenopus violet opsin cDNA, modified to contain an epitope from the carboxyl terminus of bovine rhodopsin, was expressed in COS1 cells by transient transfection and analysed by UV-visible absorption spectroscopy. The protein expressed in COS1 cells migrated at 34 kD and was glycosylated at a single site in the amino terminus, exhibiting a diffuse pattern on SDS PAGE similar to bovine rhodopsin expressed in COS1 cells. Following incubation with 11-cis retinal, a light-sensitive pigment was formed with the lambdamax=425+/-2 nm. A Schiff base linkage between retinal and the violet opsin was demonstrated by acid denaturation. Xenopus violet opsin was sensitive to hydroxylamine in the dark, reacting with a half-time of 5 min at room temperature. This is the first group S pigment for amphibians. The pigment was expressed and purified from COS1 cells in a form that has permitted for the first time determination of the extinction coefficient, reactivity to hydroxylamine and presence of a Schiff base.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012168 Retinal Pigments Photosensitive protein complexes of varied light absorption properties which are expressed in the PHOTORECEPTOR CELLS. They are OPSINS conjugated with VITAMIN A-based chromophores. Chromophores capture photons of light, leading to the activation of opsins and a biochemical cascade that ultimately excites the photoreceptor cells. Retinal Photoreceptor Pigment,Retinal Pigment,Visual Pigment,Visual Pigments,Retinal Photoreceptor Pigments,Photoreceptor Pigment, Retinal,Photoreceptor Pigments, Retinal,Pigment, Retinal,Pigment, Retinal Photoreceptor,Pigment, Visual,Pigments, Retinal,Pigments, Retinal Photoreceptor,Pigments, Visual
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D014981 Xenopus An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions

Related Publications

D M Starace, and B E Knox
April 1989, Biophysical journal,
D M Starace, and B E Knox
December 1988, Journal of the Optical Society of America. A, Optics and image science,
D M Starace, and B E Knox
July 2001, Biochemistry,
D M Starace, and B E Knox
February 2007, Journal of vision,
D M Starace, and B E Knox
January 1996, Receptors & channels,
D M Starace, and B E Knox
December 2011, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology,
D M Starace, and B E Knox
January 1988, Vision research,
Copied contents to your clipboard!