Cystatin F is a glycosylated human low molecular weight cysteine proteinase inhibitor. 1998

J Ni, and M A Fernandez, and L Danielsson, and R A Chillakuru, and J Zhang, and A Grubb, and J Su, and R Gentz, and M Abrahamson
Human Genome Sciences, Inc., Rockville, Maryland 20850-3338, USA.

A previously undescribed human member of the cystatin superfamily called cystatin F has been identified by expressed sequence tag sequencing in human cDNA libraries. A full-length cDNA clone was obtained from a library made from mRNA of CD34-depleted cord blood cells. The sequence of the cDNA contained an open reading frame encoding a putative 19-residue signal peptide and a mature protein of 126 amino acids with two disulfide bridges and enzyme-binding motifs homologous to those of Family 2 cystatins. Unlike other human cystatins, cystatin F has 2 additional Cys residues, indicating the presence of an extra disulfide bridge stabilizing the N-terminal region of the molecule. Recombinant cystatin F was produced in a baculovirus expression system and characterized. The mature recombinant protein processed by insect cells had an N-terminal segment 7 residues longer than that of cystatin C and displayed reversible inhibition of papain and cathepsin L (Ki = 1.1 and 0.31 nM, respectively), but not cathepsin B. Like cystatin E/M, cystatin F is a glycoprotein, carrying two N-linked carbohydrate chains at positions 36 and 88. An immunoassay for quantification of cystatin F showed that blood contains low levels of the inhibitor (0.9 ng/ml). Six B cell lines in culture secreted barely detectable amounts of cystatin F, but several T cell lines and especially one myeloid cell line secreted significant amounts of the inhibitor. Northern blot analysis revealed that the cystatin F gene is primarily expressed in peripheral blood cells and spleen. Tissue expression clearly different from that of the ubiquitous inhibitor, cystatin C, was also indicated by a high incidence of cystatin F clones in cDNA libraries from dendritic and T cells, but no clones identified by expressed sequence tag sequencing in several B cell libraries and in >600 libraries from other human tissues and cells.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

J Ni, and M A Fernandez, and L Danielsson, and R A Chillakuru, and J Zhang, and A Grubb, and J Su, and R Gentz, and M Abrahamson
May 1989, FEBS letters,
J Ni, and M A Fernandez, and L Danielsson, and R A Chillakuru, and J Zhang, and A Grubb, and J Su, and R Gentz, and M Abrahamson
October 1984, Journal of biochemistry,
J Ni, and M A Fernandez, and L Danielsson, and R A Chillakuru, and J Zhang, and A Grubb, and J Su, and R Gentz, and M Abrahamson
January 1985, Progress in clinical and biological research,
J Ni, and M A Fernandez, and L Danielsson, and R A Chillakuru, and J Zhang, and A Grubb, and J Su, and R Gentz, and M Abrahamson
January 1993, Archives of dermatological research,
J Ni, and M A Fernandez, and L Danielsson, and R A Chillakuru, and J Zhang, and A Grubb, and J Su, and R Gentz, and M Abrahamson
February 1998, Cancer research,
J Ni, and M A Fernandez, and L Danielsson, and R A Chillakuru, and J Zhang, and A Grubb, and J Su, and R Gentz, and M Abrahamson
July 1984, Journal of biochemistry,
J Ni, and M A Fernandez, and L Danielsson, and R A Chillakuru, and J Zhang, and A Grubb, and J Su, and R Gentz, and M Abrahamson
May 2004, Biochemistry,
J Ni, and M A Fernandez, and L Danielsson, and R A Chillakuru, and J Zhang, and A Grubb, and J Su, and R Gentz, and M Abrahamson
January 1994, Microbiology (Reading, England),
J Ni, and M A Fernandez, and L Danielsson, and R A Chillakuru, and J Zhang, and A Grubb, and J Su, and R Gentz, and M Abrahamson
December 1985, Biochimica et biophysica acta,
J Ni, and M A Fernandez, and L Danielsson, and R A Chillakuru, and J Zhang, and A Grubb, and J Su, and R Gentz, and M Abrahamson
September 1994, The Anatomical record,
Copied contents to your clipboard!