Analysis of minimal human immunodeficiency virus type 1 gag coding sequences capable of virus-like particle assembly and release. 1998

C T Wang, and H Y Lai, and J J Li
Institute of Clinical Medicine, National Yang-Ming University, and Department of Medical Research, Veterans General Hospital-Taipei, Taipei, Taiwan 11217, Republic of China. ctwang@vghtpe.gov.tw

We have constructed a series of human immunodeficiency virus (HIV) gag mutants by progressive truncation of the gag coding sequence from the C terminus and have combined these mutants with an assembly-competent matrix domain deletion mutation (DeltaMA). By using several methods, the particle-producing capabilities of each mutant were examined. Our analysis indicated that truncated Gag precursors lacking most of C-terminal gag gene products assembled and were released from 293T cells. Additionally, a mutant with a combined deletion of the MA (DeltaMA) and p6 domains even produced particles at levels comparable to that of the wild-type (wt) virus. However, most mutants derived from combination of the DeltaMA and the C-terminal truncation mutations did not release particles as well as the wt. Our smallest HIV gag gene product capable of virus-like particle formation was a 28-kDa protein which consists of a few MA amino acids and the CA-p2 domain. Sucrose density gradient fractionation analysis indicated that most mutants exhibited a wt retrovirus particle density. Exceptions to this rule were mutants with an intact MA domain but deleted downstream of the p2 domains. These C-terminal truncation mutants possessed particle densities of 1.13 to 1.15 g/ml, lower than that of the wt. The N-terminal portions of the CA domain, which have been shown to be dispensable for core assembly, became critical when most of the MA domain was deleted, suggesting a requirement for an intact CA domain to assemble and release particles.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014771 Virion The infective system of a virus, composed of the viral genome, a protein core, and a protein coat called a capsid, which may be naked or enclosed in a lipoprotein envelope called the peplos. Virus Particle,Viral Particle,Viral Particles,Particle, Viral,Particle, Virus,Particles, Viral,Particles, Virus,Virions,Virus Particles
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D015683 Gene Products, gag Proteins coded by the retroviral gag gene. The products are usually synthesized as protein precursors or POLYPROTEINS, which are then cleaved by viral proteases to yield the final products. Many of the final products are associated with the nucleoprotein core of the virion. gag is short for group-specific antigen. Viral gag Proteins,gag Antigen,gag Gene Product,gag Gene Products,gag Polyproteins,gag Protein,gag Viral Proteins,Gene Product, gag,Retroviral Antigen gag Protein,gag Antigens,gag Gene Related Protein,gag Polyprotein,Antigen, gag,Antigens, gag,Polyprotein, gag,Polyproteins, gag,Protein, gag,Proteins, Viral gag,Proteins, gag Viral,Viral Proteins, gag,gag Proteins, Viral
D017931 DNA Primers Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques. DNA Primer,Oligodeoxyribonucleotide Primer,Oligodeoxyribonucleotide Primers,Oligonucleotide Primer,Oligonucleotide Primers,Primer, DNA,Primer, Oligodeoxyribonucleotide,Primer, Oligonucleotide,Primers, DNA,Primers, Oligodeoxyribonucleotide,Primers, Oligonucleotide
D019065 Virus Assembly The assembly of VIRAL STRUCTURAL PROTEINS and nucleic acid (VIRAL DNA or VIRAL RNA) to form a VIRUS PARTICLE. Viral Assembly,Assembly, Viral,Assembly, Virus

Related Publications

C T Wang, and H Y Lai, and J J Li
December 2005, Journal of virology,
C T Wang, and H Y Lai, and J J Li
July 2004, The Journal of biological chemistry,
C T Wang, and H Y Lai, and J J Li
September 1999, The Journal of biological chemistry,
C T Wang, and H Y Lai, and J J Li
July 2005, Journal of virology,
C T Wang, and H Y Lai, and J J Li
July 1993, Journal of virology,
Copied contents to your clipboard!